

J+J FLOORING GROUP

Environmental Product Declaration TitanBac[®] Plus Backing

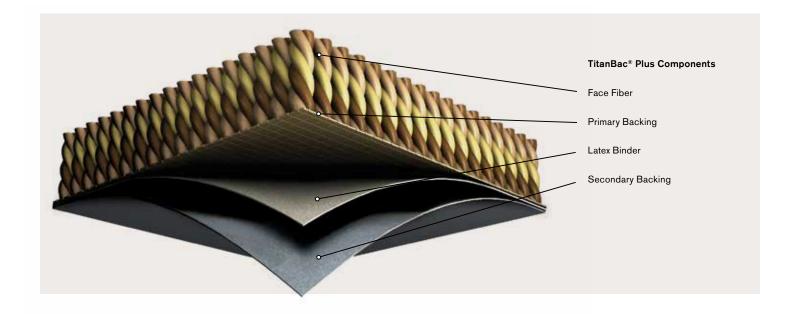
As a smaller, highly integrated, privately-owned manufacturer, J+J Flooring Group has the flexibility to easily monitor and modify our footprint while pursuing innovative sustainable practices. As a company we believe that products should be evaluated holistically using a multi-attribute approach, rather than focusing on single product attributes or certifications. With conservation as the core of our sustainability initiatives, we've developed aggressive goals on energy and emissions reduction, water conservation, recycled content and waste minimization.

INVISION

818 J&J Drive, PO Box 1287 Dalton, GA 30722 1 800 241 4586 jj-invision.com

ENVIRONMENTAL PRODUCT DECLARATION VERIFICATION

EPD INFORMATION						
PROGRAM OPERATOR NSF Interna	tional					
DECLARATION HOLDER J+J Flooring	g Group 818 J&J Drive, Dalton GA 30	722 PO Box 1287				
PRODUCT TitanBac [®] Plus	DATE OF ISSUE April 21, 2014	PERIOD OF VALIDITY 5 years	DECLARATION NUMBER EPD10025			
This EPD was independently verified by NSF	International in accordance with ISO 14025:	SIGNATURE OF REPRESENTATIVE	Monn D. Brunser			
Internal		NAME OF REPRESENTATIVE Thomas J. Bruursema	() · · ·			
	X External	CONTACT INFORMATION FOR REPRES	SENTATIVE			
	4	SIGNATURE OF REPRESENTATIVE	Inak Lilia			
This life cycle assessment was in accordance with ISO 14044 and		NAME OF REPRESENTATIVE Jack Geibig	Jack Heiling			
		CONTACT INFORMATION FOR REPRESENTATIVE jgeibig@ecoform.com				
LCA INFORMATION						
Basis LCA		TITLE OF LCA J&J Industries Inc. LCA Report: Fiscal year 2012				
Basis LCA		DATE OF ISSUE April 21, 2014				
		NAME OF PREPARER Brad McAllister				
LCA Preparer		ORGANIZATION OF PREPARER WAP Sustainability Consulting				
		CONTACT INFORMATION FOR PREPARER brad@wapsustainability.com				
		NAME OF CRITICAL REVIEWER Jack Geibig				
This life cycle assessment was cr with ISO 14044 by:	itically reviewed in accordance	ORGANIZATION OF REVIEWER Ecoform				
		CONTACT INFORMATION FOR REVIEWER jgeibig@ecoform.com				
PCR INFORMATION						
PROGRAM OPERATOR		NSF International				
REFERENCE PCR		Flooring: Carpet, Resilient, Laminate, Ceramic, Wood				
DATE OF ISSUE		April 21, 2014				
		NAME OF CHAIR Dr. Michael Overcash				
PCR review was conducted by:		ORGANIZATION OF CHAIR Environmental Clarity				
		CONTACT INFORMATION FOR CHAIR mrovercash@earthlink.net				


Environmental Product Declaration Program Operator NSF International 789 N. Dixboro Rd. Ann Arbor MI 48105 USA www.nsf.org

TitanBac[®] Plus

PRODUCT DESCRIPTION

Broadloom Carpet with latex based backing chemistry. Carpet face composition may include either Nylon 6,6 or Nylon 6 fibers that have been dyed using beck dyeing, space dyeing and/or solution dyeing techniques. Product contains both pre–consumer and post–consumer recycled content. Product is manufactured at plants in Dalton, Georgia.

Applicability

Product is intended for use as a soft floor covering in medium-to-high traffic commercial applications.

Environmental Product Declaration Program Operator NSF International 789 N. Dixboro Rd. Ann Arbor MI 48105 USA www.nsf.org

PRODUCT CHARACTERISTICS

Type of manufacture	Broadloom Ca	rpet	
Yarn type	Nylon (either 6 or 6.6).	20-37 oz/yd²	
Additional characteristics per NSF/ANSI 140	Available Reclamation	n Program	
Sustainable certifications	Certified Gold to NSF	ANSI140	
VOC emissions test method	Green Label Plus (GLP)		
CRI- TARR rating	<u>≤</u> 3.5		
CHARACTERISTICS	NOMINAL VALUE	UNIT	
Total thickness	8.50 – 16.67 (0.255 - 0.500)	mm (inch)	
Product weight	1955 - 2457 (70-88)	g/m² (oz/yd²)	
Surface pile thickness	2.51 - 8.98 (0.099 - 0.354)	mm (inch)	
Number of tufts or loops /dm²	6.45 – 9.74 (100 - 151)	dm² (in²)	
Surface pile weight	558 - 1154 (20 -41)	g/m² (oz/yd²)	
Pile fiber composition	100% N6 or 100% N6.6	%	
Secondary backing	TitanBac [®] Plus (Latex with moisture barrier)	Thermoplastic	

List of Product Standards

TEST	RESULT
AATCC2 Test Method 134-2011 Electrostatic Propensity of Carpets (Normative value \leq 3.5 KV)	<u><</u> .7 KV
AATCC2 Test Method 16-2004 Colorfastness to Light (minimum grade 4 at 40 AFU)	Met minimum grade = 5
ASTM6 E648 Standard Test Method for Critical Radiant Flux of Floor-Covering Systems Using a Radiant Heat Energy Source	Class 1, > 0.45
ASTM6 E662 Standard Test Method for Specific Optical Density of Smoke Generated by Solid Materials	< 450
ASTM6 D5252 Standard Practice for the Operation of the Hexapod Tumble Drum Tester	3
ASTM6 D7330 Standard Test Method for Assessment of Surface Appearance Change in Pile Floor Coverings Using Standard Reference Scales	3.5
ISO14 2551/ ASTM6 Dimensional Stability (Modular Tiles Only)	NA

Environmental Product Declaration Program Operator NSF International 789 N. Dixboro Rd. Ann Arbor MI 48105 USA www.nsf.org

AVERAGE MATERIAL CONTENT

				AVAILABILITY		ORIGIN OF
COMPONENT	MATERIAL	MASS %	RENEWABLE	NON-RENEWABLE	RECYCLED	RAW MATERIALS
Pile Material	Nylon 6	23%		80% Fossil resource, limited	20% Recycled content	US
File Wateria	Nylon 6.6	10%		Fossil resource, limited		US
Primary Backing	Polypropylene	6%		Fossil resource, limited		US
	VAE	16%		Fossil resource, limited		US
Consulary Desiling	ATH	25%		Fossil resource, limited		US
Secondary Backing	Calcium Carbonate	6%		Mineral, abundant	30% Recycled content	US
	Glass Cullet	10%			100% Recycled content	05
Scrim	Polypropelyne	3%		Fossil resource, limited		US

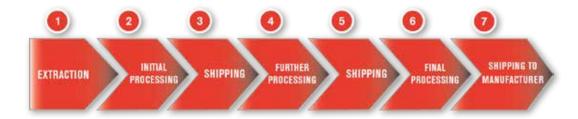
Production of main materials

Nylon 6.6: A synthetic fossil based polymer synthesized by polycondensation of hexamethylenediamine and adipic acid. **Nylon 6:** A synthetic fossil based polymer synthesized by ring opening polymerization of caprolactam.

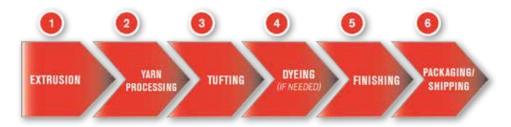
Polypropylene: A synthetic fossil based polymer produced from the polymerization of propylene.

Vinyl Acetate Ethylene Copolymers (VAE) Latex: Class of synthetic rubber that is derived from ethylene and vinyl acetate. **Aluminum hydroxide (ATH):** Inorganic mineral substance manufactured by dissolving bauxite in sodium hydroxide at temperatures up to 270°C.

Calcium Carbonate: A common substance found in rocks in all parts of the world, primarily extracted through mining or quarrying.


Glass Cullet: Finely ground recycled glass from Post-consumer sources such as bottles.

LIFE CYCLE ASSESSMENT STAGES AND REPORTED EPD INFORMATION


Sourcing/Extraction (Raw Material Acquisition) Stage

The exact route will vary based on each individual raw material's specific supply chain. In general, a material begins via extraction from the Earth or from pre- or post-consumer recycled feedstock and moves through a series of processing steps prior to being received at a manufacturing facility. Processing may include the addition or removal of supplmental materials and/or by-products. A series of transportation steps are required to move intermediate goods between facilities. Transportation modes may include truck, rail, sea freight and/or air.

Manufacturing Stage

The manufacturing process involves first extruding nylon raw material into fiber (1), and then processing the fiber into yarn (2). Once the yarn is manufactured, the next steps in the manufacturing process include tufting the yarn onto the primary backing (3), followed by dyeing as needed (4). After the intermediate goods are colored as specified, then they are finished (5) and finally packaged for final shipment (6).

HEALTH, SAFETY, AND ENVIRONMENTAL ASPECTS DURING PRODUCTION

- ISO14001 Environmental Management System
- Compliance with local, state and federal regulations relating to the environment and workplace safety
- Part of corporate Design for Environment program of J+J Flooring Group
- Meets requirements within the Public Health and Environment section of NSF140
- Corporate workplace safety program
- Utilization of LEAN manufacturing principles for the reduction of waste during production

PRODUCTION WASTE

J+J Flooring Group strives to reduce all production waste through increased efficiency and utilization of raw materials. Any remaining waste that is generated is reclaimed and reused in the manufacturing process or sent to recycling partners. J+J Flooring Group has a strategic goal to be landfill free by 2020.

Delivery and installation stage

DELIVERY

J+J Flooring Group is provided to both the domestic and international marketplace. Domestic shipments are typically completed by truck, whereas international shipments utilize ocean freight and truck. The delivery distance to each job site is project specific and J+J Flooring Group requests that customers contact their sales representative for details regarding delivery options.

INSTALLATION

It is recommended that the installation of carpet be accomplished through the use Commercialon[®] Premium Carpet Adhesive. Full instructions regarding installation of carpet are provided in the J+J Flooring Group's Carpet Installation handbook located at:

http://www.jj-invision.com/pages/technical-carpet-installation-maintenance

HEALTH, SAFETY AND ENVIRONMENTAL ASPECTS DURING INSTALLATION

Adhesives used during installation meet the requirements of California South Coast Air Quality Management District Rule #1168 or are in accordance with the emissions requirements in California Department of Public Health Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers, Version 1.1, February 2010 (also known as CA 01350 or may be referenced as Floor-Score or Green Label Plus approved).

The MSDS's for installation adhesives can be viewed at: http://www.jj-invision.com/pages/premium-carpet-adhesive

INSTALLATION WASTE

Packaging waste generated during the installation phase can be recycled with local recycling options. For more details regarding J+J Flooring Group's Carpet Reclamation program, please call **1.800.241.4586** or visit: http://www.jj-invision.com/pages/Carpet-Reclamation/

PACKAGING

Prior to shipping, broadloom carpet is rolled on cardboard cores, protected with thin film plastic stretch wrap (LLDPE) and labeled. All packaging materials are recyclable through local recycling options.

Use Stage

USE OF THE FLOOR COVERING

The reference service life of J+J Flooring Group carpet is 15 years, although J&J's carpet may be replaced sooner due to changes in fashion. We are proud to offer to the market a limited lifetime warranty on most of our products.

CLEANING AND MAINTENANCE

The LCA was modeled with the following cleaning and mantenance assumptions::

LEVEL OF USE	CLEANING PROCESS	CLEANING FREQUENCY (TIMES / YEAR)	CONSUMPTION OF ENERGY AND RESOURCES
Commercial	Vacuum Cleaning	4 times / week	Electrical Energy
	Rinse Cleaning	2 times / year	Electrical Energy, Water
	Deep Cleaning (extraction)	2 times / year	Electrical Energy, Water, cleaning agent.

Environmental Product Declaration Program Operator NSF International 789 N. Dixboro Rd. Ann Arbor MI 48105 USA www.nsf.org

STRUCTURAL DAMAGE

Carpet should not be installed until all structural damage has been adequately repaired and determined to be code compliant.

End of Life Stage

RECYCLE, REUSE, OR REPURPOSE

It is recommended that customers utilize J+J Flooring Group's carpet reclamation program for the recycling of J+J Flooring Group carpet. To initiate the carpet reclamation process, please call **1.800.241.4586** or visit: http://www.jj-invision.com/pages/Carpet-Reclamation/

DISPOSAL

Recycling of J+J Flooring Group's carpet is recommended. However, carpet can be disposed of in municipal landfills or sent to waste-to-energy facilities (subject to local regulations). To maintain a conservative LCA approach, end of life options included landfill disposal, waste-to-energy, and reclamation/recycling. Rates of each option were based on research and public reporting of the Carpet America Recovery Effort (CARE).

LIFE CYCLE ASSESSMENT (LCA)

General

A cradle-to-grave life cycle assessment (LCA) was conducted in accordance to the ISO14040/14044 series of standards. Additionally, external third parties critically reviewed the LCA study. The LCA assessed the Sourcing/Extraction, Manufacturing Delivery and Installation, Use, and End-of-life stages of the product's life cycle.

Description of the functional unit

The functional unit is 1 square meter of carpet. The service life of the carpet is 15 years.

Cut-off criteria

Excluded materials met the following criteria:

- Less than 1% of the total mass of the final product.
- Less than 1% of the total energy flows.
- Total excluded materials did not exceed 5% of final product.
- Were identified as not having disproportionally high environmental impact.

Allocation

Background data used in the LCA model may contain some allocation. Primary data for J+J Flooring Group production was not allocated.

Background data

The LCA was modeled using the GaBi 6 software platform. Background data was typically sourced from PE International datasets, although some data from PlasticsEurope and the USLCI database were utilized when appropriate PE datasets were not available.

Data quality

Time Related Coverage: All gate-to-gate manufacturing data was sourced from J+J Flooring Group's records for 2012. The time coverage of background data is adopted from the specific datasets utilized in the model. Priority was given to the most up-to-date dataset available at the time the model was created. No background data is more than 10 years old.

Geographical Coverage: All gate-to-gate manufacturing data are specific to J+J Flooring Group's locations and have been verified through third-party certification programs. The Geographical Coverage background data is adopted through the use of the specific datasets utilized in the model. In general, domestic data were preferred, however the absence of US specific data required some international data to be utilized.

Technology coverage: Data utilized in the model represent the most current technology.

System boundaries

The LCA of 1 M² of J+J Flooring Group's carpet includes:

- Sourcing/Extraction Stage
- Manufacturing Stage
- Delivery and Installation Stage
- Use Stage
- · End of Life Stage

SOURCING / EXTRACTION STAGE

Supply chain impacts to source raw materials, including transportation and packaging of these materials.

MANUFACTURING Stage

Includes all gate-to-gate processes required to produce carpet from sourced raw materials.

DELIVERY & INSTALLATION STAGE

Includes packaging of finished carpet product, shipping of finished carpet product and the installation of carpet at customer's project site. Includes cleaning and maintenance of carpet over time.

USE

STAGE

END OF LIFE Stage

Includes end of life options such as disposal in landfill, waste-toenergy and reclamation.

Environmental Product Declaration Program Operator NSF International 789 N. Dixboro Rd. Ann Arbor MI 48105 USA www.nsf.org

Notes on use stage

Carpet manufactured by J+J Flooring Group carries a limited lifetime warranty. While the actual lifetime of the carpet is contingent on several factors, including changing style preference and building traffic, J+J Flooring Group has assumed a 15 year service life in the LCA model. Results are presented for a single year of use, as well as for a 60-year reference service life of a building.

Results of Assessment

LIFE CYCLE INVENTORY ANALYSIS

Face Fiber Weight	20 OZ / SY	23 OZ / SY	37 OZ / SY
Primary Energy - Non-Renewable (MJ)	181.71	198.83	278.75
Lignite (%)	0.71%	0.71%	0.72%
Mineral Coal (%)	13.89%	13.57%	12.67%
Natural Gas (%)	39.89%	39.30%	37.61%
0il (%)	38.78%	39.75%	42.80%
Nuclear (%)	6.73%	6.58%	6.20%
Primary Energy - Renewable (MJ)	34.16	38.05	56.20
Hydropower (%)	3.09%	3.02%	2.80%
Windpower (%)	91.09%	91.48%	92.62%
Solar Energy (Solar Power, Biomass) (%)	5.42%	5.10%	4.20%
Geothermics (%)	0.40%	0.39%	0.38%
Secondary Fuels (MJ)	0	0	0
Non-Renewable Material Sources (kg)	7.61	8.16	10.69
Output Flows			
Non-Hazardous Waste (kg)	6.72	7.25	9.75
Hazardous Waste (kg)	0	0	0

LIFE CYCLE IMPACT ASSESSMENT

CML2001 - NOV. 2010 RESULTS

Table A

The Flooring: Carpet, Resilient, Laminate, Ceramic, Wood PCR is currently under expert review. It is expected that this review will conclude that *Table A: Life Cycle Impacts for a One Year Use Stage* will no longer be necessary in future EPDs. The absence of Table A in this EPD is recognized by NSF as an appropriate deviation from the PCR.

Table B

Life Cycle Stage Impacts for a Building Life of 60 Years

Face Fiber Weight: 23oz/ SY	Units	TOTA	L	SOURCI	NG	MANUFAC	TURE	DELIVERY & IN	STALLATION	USI		END OF L	IFE
CML IMPACT CATEGORIES													
Global Warming (GWP)	kg CO ₂ eq.	77.7	100%	35.0	45%	8.5	11%	1.8	2%	30.8	40%	1.6	2%
Acidification (AP)	kg SO ₂ eq.	0.2448	100%	0.0852	35%	0.0427	17%	0.0061	3%	0.1106	45%	0.0001	0%
Ozone Depletion (ODP)	kg CFC-11 eq.	7.84E-07	100%	5.43E-08	7%	7.18E-07	91%	6.44E-11	0%	1.23E-08	2%	2.42E-10	0%
Smog (POCP)	kg C ₂ H ₄ eq.	0.0214	100%	0.0117	55%	0.0024	11%	-0.0003	-1%	0.0073	34%	0.0002	1%
Eutrophication (NP)	kg PO ₄ eq.	0.0219	100%	0.0119	54%	0.0022	10%	0.0011	5%	0.0055	25%	0.0013	6%
Abiotic Depletion (ADP)	kg SB eq.	7.52E-05	100%	6.34E-05	84%	9.10E-06	12%	3.74E-07	0%	2.29E-06	3%	-1.0E-08	0%

Breakdown of Use Stage Impacts

	TOTAL %	ANNUAL ACTIVITIES	INTERMITENT ACTIVITIES
Global Warming	100%	100%	0%
Acidification	100%	100%	0%
Ozone Depletion	100%	100%	0%
Smog	100%	100%	0%
Eutrophication	100%	100%	0%
Abiotic Depletion	100%	100%	0%

	Units	20 OZ / SY	23 OZ / SY	37 OZ / SY
CML IMPACT CATEGORIES				
Global Warming (GWP)	kg CO ₂ eq.	73.2	77.7	98.5
Acidification (AP)	kg SO ₂ eq.	0.233	.02448	0.298
Ozone Depletion (ODP)	kg CFC-11 eq.	7.34E-07	7.84E-07	1.02E-06
Smog (POCP)	kg C ₂ H ₄ eq.	0.020	0.021	0.027
Eutrophication (NP)	kg PO ₄ eq.	0.020	0.022	0.029
Abiotic Depletion (ADP)	kg SB eq.	7.24E-05	7.52E-05	8.79E-05

Environmental Product Declaration Program Operator NSF International 789 N. Dixboro Rd. Ann Arbor MI 48105 USA www.nsf.org

TRACI RESULTS

Table A

The Flooring: Carpet, Resilient, Laminate, Ceramic, Wood PCR is currently under expert review. It is expected that this review will conclude that *Table A: Life Cycle Impacts for a One Year Use Stage* will no longer be necessary in future EPDs. The absence of Table A in this EPD is recognized by NSF as an appropriate deviation from the PCR.

Table B													
Face Fiber Weight: 23 oz / SY	Units	TOTA	L	SOURCI	NG	MANUFAC	TURE	DELIVERY & IN	STALLATION	USE		END OF L	IFE
TRACI IMPACT CATEGORIES													
Global Warming (GWP)	kg CO ₂ eq.	77.0	100%	34.9	45%	8.7	11%	1.6	2%	30.9	40%	0.9	1%
Acidification (AP)	kg SO ₂ eq.	0.238	100%	0.088	37%	0.040	17%	0.007	3%	0.103	43%	0.000	0%
Ozone Depletion (ODP)	kg CFC-11 eq.	8.55E-07	100%	5.94E-08	7 %	7.82E-07	91%	6.90E-11	0%	1.30E-08	2%	2.83E-10	0%
Smog (POCP)	kg C ₂ H ₄ eq.	3.116	100%	1.7143	55%	0.426	14%	0.120	4%	0.840	27%	0.000	0%
Eutrophication (NP)	kg PO ₄ eq.	0.04665	100%	0.040	86%	0.001	3%	0.000	1%	0.004	9%	0.001	1%

	TOTAL %	ANNUAL ACTIVITIES	INTERMITENT ACTIVITIES
Global Warming	100%	100%	0%
Acidification	100%	100%	O%
Ozone Depletion	100%	100%	O%
Smog	100%	100%	0%
Eutrophication	100%	100%	O%

Results for Low, Medium, and High Face Weight

	Units	Units 20 OZ / SY		37 OZ / SY
TRACI IMPACT CATEGORIES				
Global Warming (GWP)	kg CO ₂ eq.	72.5	77.0	97.7
Acidification (AP)	kg SO ₂ eq.	0.226	0.238	0.291
Ozone Depletion (ODP)	kg CFC-11 eq.	8.00E-07	8.55E-07	1.11E-06
Smog (POCP)	kg C ₂ H ₄ eq.	2.637	3.116	3.655
Eutrophication (NP)	kg PO ₄ eq.	0.042	0.04665	0.069

Environmental Product Declaration Program Operator NSF International 789 N. Dixboro Rd. Ann Arbor MI 48105 USA www.nsf.org

ADDITIONAL ENVIRONMENTAL INFORMATION

- NSF 140 Gold Certification
- CRI Green Label Plus Certification
- Available post-consumer reclamation options.
- J+J Flooring Group operates under an all-inclusive Environmental Action (EnAct®) Program whereby all associate and corporate environmental activities are measure and improved.
- J+J Flooring Group offers sample returns under its R4 Program, a subset of J+J's EnAct efforts.
- J+J Flooring Group proudly offers to the market an annual, transparent Sustainable Progress Report. Please see the following website for more details: http://www.jj-invision.com/pages/sustainability-report

PremierBac Plus Broadloom Backing, Life Cycle Impacts for a Building Life of 60 Years Across Available Face Weights

CML IMPACT CATEGORIES	oz / sy	20	21	22	23	24	25	26	27	28
Global Warming (GWP)	kg CO, eq.	73.2	74.7	76.2	77.7	79.2	80.7	82.2	83.6	85.1
Acidification (AP)	kg SO ₂ eq.	0.233	0.237	0.241	0.245	0.249	0.252	0.256	0.260	0.264
Ozone Depletion (ODP)	kg CFC-11 eq.	7.34E-07	7.51E-07	7.68E-07	7.84E-07	8.01E-07	8.18E-07	8.34E-07	8.51E-07	8.68E-07
Smog (POCP)	kg C ₂ H ₄ eq.	0.0202	0.0206	0.0210	0.0214	0.0218	0.0222	0.0222	0.0230	0.0234
Eutrophication (NP)	kg PO ₄ eq.	0.0204	0.0209	0.0214	0.0219	0.0224	0.0229	0.0234	0.0239	0.0244
Abiotic Depletion (ADP)	kg SB eq.	7.24E-05	7.33E-05	7.42E-05	7.52E-05	7.61E-05	7.70E-05	7.79E-05	7.88E-05	7.97E-05
Primary Energy - Non-Renewable	MJ	181.71	187.42	193.13	198.83	204.54	210.25	215.96	221.67	227.37
Primary Energy - Renewable		34.16	35.46	36.75	38.05	39.35	40.64	41.94	43.24	44.53
Secondary Fuels		0	0	0	0	0	0	0	0	0
Non-Renewable Material Sources		7.61	7.79	7.97	8.16	8.34	8.52	8.70	8.88	9.06
Non-Hazardous Waste		6.72	6.90	7.08	7.25	7.43	7.61	7.79	7.97	8.14
Hazardous Waste	KG	0	0	0	0	0	0	0	0	0
CML IMPACT CATEGORIES	oz / sy	29	30	31	32	33	34	35	36	37
Global Warming (GWP)	kg CO ₂ eq.	86.6	88.1	89.6	91.1	92.6	94.1	95.6	97.1	98.5
Global Warming (GWP) Acidification (AP)	kg CO ₂ eq. kg SO ₂ eq.	86.6 0.267	88.1 0.271			92.6 0.283	94.1 0.286			
				89.6	91.1			95.6	97.1	98.5 0.298
Acidification (AP)	kg SO ₂ eq.	0.267	0.271	89.6 0.275	91.1 0.279	0.283	0.286	95.6 0.290	97.1 0.294	98.5
Acidification (AP) Ozone Depletion (ODP)	kg SO ₂ eq. kg CFC-11 eq.	0.267 8.84E-07	0.271 9.01E-07	89.6 0.275 9.18E-07	91.1 0.279 9.34E-07	0.283 9.51E-07	0.286 9.68E-07	95.6 0.290 9.84E-07	97.1 0.294 1.00E-06	98.5 0.298 1.02E-06
Acidification (AP) Ozone Depletion (ODP) Smog (POCP)	kg SO ₂ eq. kg CFC-11 eq. kg C ₂ H ₄ eq.	0.267 8.84E-07 0.0238	0.271 9.01E-07 0.0242	89.6 0.275 9.18E-07 0.0246	91.1 0.279 9.34E-07 0.0250	0.283 9.51E-07 0.0254	0.286 9.68E-07 0.0258	95.6 0.290 9.84E-07 0.0262	97.1 0.294 1.00E-06 0.0266	98.5 0.298 1.02E-06 0.0270 0.0290
Acidification (AP) Ozone Depletion (ODP) Smog (POCP) Eutrophication (NP)	kg SO ₂ eq. kg CFC-11 eq. kg C ₂ H ₄ eq. kg PO ₄ eq.	0.267 8.84E-07 0.0238 0.0249	0.271 9.01E-07 0.0242 0.0255	89.6 0.275 9.18E-07 0.0246 0.0260	91.1 0.279 9.34E-07 0.0250 0.0265	0.283 9.51E-07 0.0254 0.0270	0.286 9.68E-07 0.0258 0.0275	95.6 0.290 9.84E-07 0.0262 0.0280	97.1 0.294 1.00E-06 0.0266 0.0285	98.5 0.298 1.02E-06 0.0270 0.0290
Acidification (AP) Ozone Depletion (ODP) Smog (POCP) Eutrophication (NP) Abiotic Depletion (ADP)	kg SO ₂ eq. kg CFC-11 eq. kg C ₂ H ₄ eq. kg PO ₄ eq. kg SB eq.	0.267 8.84E-07 0.0238 0.0249 8.06E-05	0.271 9.01E-07 0.0242 0.0255 8.15E-05	89.6 0.275 9.18E-07 0.0246 0.0260 8.24E-05	91.1 0.279 9.34E-07 0.0250 0.0265 8.33E-05	0.283 9.51E-07 0.0254 0.0270 8.42E-05	0.286 9.68E-07 0.0258 0.0275 8.51E-05	95.6 0.290 9.84E-07 0.0262 0.0280 8.60E-05	97.1 0.294 1.00E-06 0.0266 0.0285 8.70E-05	98.5 0.298 1.02E-06 0.0270 0.0290 8.79E-05
Acidification (AP) Ozone Depletion (ODP) Smog (POCP) Eutrophication (NP) Abiotic Depletion (ADP) Primary Energy - Non-Renewable	kg SD, eq. kg CFC-11 eq. kg C ₂ H, eq. kg PO, eq. kg SB eq.	0.267 8.84E-07 0.0238 0.0249 8.06E-05 233.08	0.271 9.01E-07 0.0242 0.0255 8.15E-05 238.79	89.6 0.275 9.18E-07 0.0246 0.0260 8.24E-05 244.50	91.1 0.279 9.34E-07 0.0250 0.0265 8.33E-05 250.21	0.283 9.51E-07 0.0254 0.0270 8.42E-05 255.92	0.286 9.68E-07 0.0258 0.0275 8.51E-05 261.62	95.6 0.290 9.84E-07 0.0262 0.0280 8.60E-05 267.33	97.1 0.294 1.00E-06 0.0266 0.0285 8.70E-05 273.04	98.5 0.298 1.02E-06 0.0270 0.0290 8.79E-05 278.75
Acidification (AP) Ozone Depletion (ODP) Smog (POCP) Eutrophication (NP) Abiotic Depletion (ADP) Primary Energy - Non-Renewable Primary Energy - Renewable	kg SD, eq. kg CFC-11 eq. kg C,H, eq. kg PO, eq. kg SB eq. MJ MJ	0.267 8.84E-07 0.0238 0.0249 8.06E-05 233.08 45.83	0.271 9.01E-07 0.0242 0.0255 8.15E-05 238.79 47.13	89.6 0.275 9.18E-07 0.0246 0.0260 8.24E-05 244.50 48.42	91.1 0.279 9.34E-07 0.0250 0.0265 8.33E-05 250.21 49.72	0.283 9.51E-07 0.0254 0.0270 8.42E-05 255.92 51.02	0.286 9.68E-07 0.0258 0.0275 8.51E-05 261.62 52.31	95.6 0.290 9.84E-07 0.0262 0.0280 8.60E-05 267.33 53.61	97.1 0.294 1.00E-06 0.0266 0.0285 8.70E-05 273.04 54.91	98.5 0.298 1.02E-06 0.0270 0.0290 8.79E-05 278.75 56.2
Acidification (AP) Ozone Depletion (ODP) Smog (POCP) Eutrophication (NP) Abiotic Depletion (ADP) Primary Energy - Non-Renewable Primary Energy - Renewable Secondary Fuels	kg SD, eq. kg CFC-11 eq. kg C,H, eq. kg PD, eq. kg SB eq. MJ MJ MJ	0.267 8.84E-07 0.0238 0.0249 8.06E-05 233.08 45.83 0	0.271 9.01E-07 0.0242 0.0255 8.15E-05 238.79 47.13 0	89.6 0.275 9.18E-07 0.0246 0.0260 8.24E-05 244.50 48.42 0	91.1 0.279 9.34E-07 0.0250 0.0265 8.33E-05 250.21 49.72 0	0.283 9.51E-07 0.0254 0.0270 8.42E-05 255.92 51.02 0	0.286 9.68E-07 0.0258 0.0275 8.51E-05 261.62 52.31 0	95.6 0.290 9.84E-07 0.0262 0.0280 8.60E-05 267.33 53.61 0	97.1 0.294 1.00E-06 0.0266 0.0285 8.70E-05 273.04 54.91 0	98.5 0.298 1.02E-06 0.0270 0.0290 8.79E-05 278.75 56.2 0

Environmental Product Declaration Program Operator NSF International 789 N. Dixboro Rd. Ann Arbor MI 48105 USA www.nsf.org