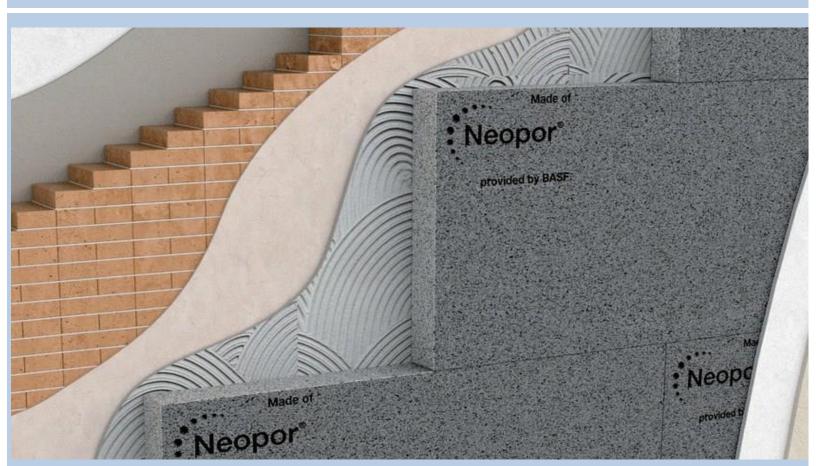


Certified Environmental Product Declaration

www.nsf.org


ENVIRONMENTAL PRODUCT DECLARATION

Owner of the Declaration	BASF Corporation
EPD Program Operator	NSF International
PCR Program Operator	UL Environment
Declaration number	EPD10152
Issue date	November 7, 2018
Period of Validity	5 years

Neopor[®] Plus Graphite Polystyrene Insulation

1.0 General Information

Ner	NSF International
NSE NSE	789 N. Dixboro Road.
EPD Program Operator	Ann Arbor Michigan 48105 USA www.nsf.org
Declaration Holder	BASF Corporation
	100 Park Avenue
	Florham Park, NJ 07932
LCA and Declaration Prepared by	Bruce Uhlman, LCACP
	BASF Corporation
	100 Park Avenue
	Florham Park, NJ 07932
Declaration Number	EPD10152
Declared Product and Functional Unit	1 m ² of installed Neopor® Plus Graphite Polystyrene (GPS) Type I insulation
	material with a thickness that gives an average thermal resistance (RSI) of 1
	m ² *K/W (5.68 ft ² *hr.*F/BTU per inch) with a building service life of 75 years
	(packaging included).
Product Category and Subcategory	(category) Building Related Products and Services
	(subcategory) Building Envelope Thermal Insulation
	UL Environment
	333 Pfingsten Road
PCR Program Operator	Northbrook, IL 60062 https://industries.ul.com/environment
Reference PCRs	ISO 21930:2017 and EN 15804:2012-04 serve as the core PCR along with
	Product Category Rules for Building-Related Products and Services; Part A
	(Standard 10010 version 3.1 4 th edition, May 2, 2018) and Product Catgory Rule
	(PCR) Guidance for Building-Related Products and Services; Part B: Building
	Thermal Insulation EPD Requirements UL 10010-1 (2 nd edition, April 10, 2018)
Date of Issue	November 7, 2018
Period of Validity	5 years from date of issue
Contents of the Declaration	 Product definition and material characteristics
	 Overview of manufacturing process
	 Information about in-use conditions
	 Life cycle assessment results
	 Testing verifications
This EPD was independently verified by	Jenny Oorbeck
NSF International in accordance with ISO	
21930 and ISO 14025.	joorbeck@nsf.org
Internal External	
	V/may Orez
This life cycle assessment was	Jack Geibig - EcoForm
independently verified in accordance	jgeibig@ecoform.com
with ISO 14044 and the reference PCR by	
	Jack Heiling
Product's intended application and use	The performance properties of Neopor® Plus Graphite Polystyrene (GPS)
and markets of applicability	insulation boards make them suitable for use in many applications. The product
and markets of approability	described in this document is used in applications such as wall insulation, pitched
	roof insulation, External Insulation and Finish System (EIFS), cavity wall insulation,
	ceiling insulation, insulation for building equipment and industrial installations.
Product RSL	75 years
EPD Type	Product specific
Range of data set variability	Manufacturer-average
EPD Scope	Cradle to Gate (installation) with options (end of life)
Years of reported Mfg primary data	1 year
LCA Software & Version number	Gabi ts 8.5.0.79
LCI Database & Version number	Gabi ts 8.5.0.79
LCIA Methodology & Version number	TRACI v2.1 and CML 2001 (2016)
Limitations	Environmental declarations from different programs (ISO 14025) may not be
	comparable. Comparison of the environmental performance of Building Envelope
	Thermal Insulation using EPD information shall be based on the product's use and
	impacts at the building level, and therefore EPDs may not be used for
	comparability purposes when not considering the building energy use phase as
	instructed under this PCR. Full conformance with the PCR for Building Envelope
	Thermal Insulation allows EPD comparability only when all stages of a life cycle
	have been considered. However, variations and deviations are possible". Example
	have been considered. However, variations and deviations are possible". Example of variations: Different LCA software and background LCI datasets may lead to
	have been considered. However, variations and deviations are possible". Example

2.0 Product

2.1 Description of Companies

Neopor[®] Plus GPS (**G**raphite **P**oly**S**tyrene) resin is produced by BASF in Ludwigshafen, Germany. The Neopor[®] Plus GPS resin is then further processed by Atlas EPS into insulation boards at one of their four North American manufacturing locations: (1) 8240 Byron Center Ave SW, Byron Center, Michigan 49315; (2) 445 Industrial Park Drive, Martinsville, Virginia 24148; (3) 911 Industrial Drive, Perryville, Missouri 63775; and (4) Privada Misiones No. 1108 Tijuana, Baja California 22244 (Mexico).

2.2 Product description

Neopor® Plus (GPS) insulation boards are graphite polystyrene (GPS) with a polymeric flame retardant in uniform distribution (blowing agent: pentane).

2.3 Application

The performance properties of Neopor® Plus Graphite Polystyrene (GPS) insulation panels make them suitable for use in many applications. The product described in this document is used in applications such as wall insulation, roof insulation, External Insulation and Finish System (EIFS), cavity wall insulation, interior insulation, insulation for building equipment and industrial installations.

2.4 Technical Data

Performance data of the product in accordance with the declaration of performance with respect to its essential characteristics according to ASTM C578 Standard Specification for Rigid, Cellular Polystyrene Thermal Insulation.

Name	Value	Value	Value	Value	Unit
ASTM C578 Classification	Type I	Type VIII	Type II	Type IX	
Density ASTM C303	0.90	1.15	1.45	1.80	lbs. / ft ³
Thermal Conductivity (lambda) ASTM C518	0.18	0.18	0.18	0.18	BTU*ft/hr.*ft ² *F
Thermal Resistance ASTM C518	4.7	4.7	4.7	4.7	ft ^{2*} hr.*F/BTU/in
Compressive Resistance ASTM D1621	10	14	20	25	At yield of 10% deformation in psi (min)
Water Absorption by Total Immersion ASTM C272	1.1	1.1	1.1	1.1	Max volume % absorbed

Overall, Neopor® Plus Graphite Polystyrene (GPS) insulation panels were evaluated for the following properties:

- Surface Burning Characteristics (ANSI/UL723, ASTM E84)
- Physical Properties (ASTM C578)
- Roofing Systems for Exterior Fire Exposure (ANSI/UL790, ASTM E108)

- Roof Deck Construction Material with Resistance to Internal Fire Exposure (ANSI/UL1256)
- Flammability Testing for Use in Attics and Crawl Spaces (AC12, App. A and B)
- For Use on Exterior Commercial Walls (NFPA 285)
- Material Emissions (UL2818 and California Department of Public Health, CDPH/EHLB/Standard Method

2.5 Delivery status

Neopor® F5300 Plus GPS resin is supplied to Atlas EPS at their North American manufacturing locations listed in section 2.1 as lens-shaped granules. Atlas EPS provides insulation boards at various densities and shapes to the construction industry. Atlas EPS is a verified molder under the BASF Neopor® Brand Marketing Agreement that utilize BASF Neopor® resins in their UL certified end-use products.

2.6 Base materials / Ancillary materials

Atlas insulation boards are made from the expansion of Neopor® resin through the use of a blowing agent. The Neopor® F5300 Plus GPS resin consists of polystyrene, a blowing agent, graphite and a flame retardant. The composition range for the resin is: polystyrene (85% - 90% by weight), pentane/isopentane (3% - 7% by weight), graphite (3% - 7% by weight) and a polymeric flame retardant (0.5% - 2.0% by weight).

For the preparation of flame-retardant polystyrene granules, a polymeric flame retardant (polymer FR) with about 1.1% by mass is added. Polymer-FR is a brominated styrene-butadiene copolymer (CAS No 1195978-93-8) that is not subject to the REACH Regulation for Substances of Very High Concern. To improve the insulation performance, graphite is added. As a result, the reflection and absorption behavior of heat radiation is changed, whereby the insulating performance of the product is improved with low layer thickness and density. The pentane assists in the expansion process and is released partly during and shortly after production (ageing process).

In addition to the basic materials, the manufacturer does not use any secondary polystyrene material that is reused during the production process. No other additives are used in relevant amounts. Polystyrene and pentane are produced from oil and natural gas, and therefore linked to the availability of these raw materials.

2.7 Manufacture

For the production Neopor® Plus Graphite Polystyrene (GPS) insulation boards, a multi-stage process is carried out. At the beginning Neopor® Plus GPS resin is produced by BASF SE at their Verbund site in Ludwigshafen, Germany followed by the foaming and molding processes at Atlas EPS in various sites across North America. The conversion process of GPS granules to foamed insulation boards consists of the

following manufacturing stages: pre-foaming, conditioning, block molding and finally cutting into the desired sizes.

During the pre-foaming stage, the resin is foamed with the aid of steam and the blowing agent pentane. Subsequently, the expanded granules are stored in airpermeable silos. Due to the diffusing air, the GPS foam particles receive the necessary stability for further processing.

The most commonly used method of producing GPS insulation boards is block molding followed by cutting. In this process, the GPS foam particles are filled into large block-shaped forms and foamed with steam. Then the blocks are cut into boards using mechanical or thermal cutting equipment. Additional edge profiling (tongue and groove or shiplap) can be added through milling machining.

RawMaterial Acquisition GPS Resin (pre-foaming) Expansion Aging Waste (landfill) Molding Cutting Scrap Cutting Crap

Cut offs are disposed of as waste to landfill.

2.8 Environment and health during manufacturing

During the storage (aging) and processing of Neopor® Plus Graphite Polystyrene (GPS) insulation boards, pentane escapes the panels. Especially when cutting the foam with heated wires, good ventilation in the working area is necessary. This is because the vapor contains pentane and small amounts of styrene. Therefore, manufacturing areas should be wellventilated and maximum workplace concentrations for styrene and pentane must be considered.

No ozone depleting substances as regulated by the EPA, such as CFC or HCFCs, are used as blowing agents for the production of Neopor® Plus Graphite Polystyrene (GPS) insulation materials.

This product contains styrene, which is listed as a hazardous air pollutant (Clean Air Act). This product contains pentane and residual styrene monomer, which OSHA defines as a hazardous chemical (SARA Title III Regulations). This product may be portable under SARA sections 311 and 312, depending on the maximum on-site storage volumes. This product contains a substance subject to a Significant New Use Rule (SNUR) or consent order restriction: TSCA § 5(a) final Significant New Use Restriction (SNUR) 40 CFR 721.10280. Pentane has a CERCLA recordable

quantity (RQ) of 100 pounds. All ingredients are listed on the TSCA inventory. This material contains detectable amounts of some chemicals known to the State of California to cause cancer. Styrene oxide is listed as known to the State of California to cause cancer. Styrene oxide is a metabolite of styrene monomer. Pentane, isopentane and graphite are covered by PA, MA and NJ Right To Know (RTK) acts.

2.9 Product rocessing/Installation

Thermally insulating a building with Neopor® Plus Graphite Polystyrene (GPS) insulation products is an effective path toward sustainable energy savings. Additionally, Neopor® Plus Graphite Polystyrene (GPS) insulation materials are relatively light weight making them easy to process and to work with.

The insulation boards are dimensionally stable and absorb virtually no moisture. This is not only of great importance for the entire life cycle of the building but also for the construction phase.

For all applications, the relevant standards and building codes as well as manufacturer instructions must be observed. Compliance with model building codes does not always ensure compliance with state or local building codes, which may be amended versions of these model codes. Always check with local building code officials to confirm compliance

Depending on the application, Neopor® Plus Graphite Polystyrene (GPS) insulation panels can be adhered to a wall with system approved adhesives or can be mechanically fastened. Different systems require different fastening requirements so consult your system supplier guidelines. Installation does not require any energy or water usage.

2.10 Packaging

External factors, such as solar energy conveyed via reflective surfaces, can create excessive heat build-up within insulation products made of Neopor® GPS foam. Excessive heat-build-up can damage insulation products made of Neopor® GPS foam. Precautionary measures taken in the packaging, storage, transportation and installation of insulation products made of Neopor® GPS foam can help minimize the potential for damage. Insulation products and foam surfaces should be protected at all times from reflected sunlight and prolonged solar exposure. Neopor® Plus Graphite Polystyrene (GPS) insulation boards should be packed in white opaque polyethylene plastic bags. Finally, this opaque film packaging is recyclable and can be recycled where suitable return systems exist. However, the recycling of the packaging film is not considered in this EPD.

2.11 Condition of use

Water pick up by capillarity does not occur with Neopor® Plus Graphite Polystyrene (GPS) foams, due to the closed cell structure. The thermal insulation performance of Neopor® Plus Graphite Polystyrene (GPS) insulation materials is practically unaffected by exposure to water or water vapor due to its drying capability should it ever become wet. Properly installed Neopor® Plus Graphite Polystyrene (GPS) insulation boards are durable with respect to their insulation, structural and dimensional properties. They are water resistant, resistant against microorganisms and against most chemical substances. It should not, however, be brought into contact with organic solvents.

The application of insulation material has a positive impact on energy efficiency of buildings. Quantification is only possible in context with the construction system of the building.

Dependent on the specific material and the frame conditions of installation, residual pentane may diffuse. Quantified measurements and release profiles cannot be declared.

2.12 Environment and health during use

Neopor® Plus Graphite Polystyrene (GPS) insulation boards in most applications are neither in direct contact with the environment nor with indoor air. However, when naked EPS/GPS products were tested for VOC emissions, the emissions proved to be below the limit values in countries with such regulation (see section 6.1). Neopor® Plus Graphite Polystyrene (GPS) insulation boards have also achieved GREENGUARD Gold certification to UL 2818, product certification for low chemical emissions for building materials, finishes and furnishings.

2.13 Reference service life

If applied correctly, the lifetime of Neopor® Plus Graphite Polystyrene (GPS) insulation board is equal to the building life time, usually without requiring any maintenance. The reference service life considered is 75 years.

2.14 Extraordinary effects

The following is a listing of the standards required for the testing, evaluation and approval of Neopor® Plus Graphite Polystyrene (GPS) insulation board for use in the intended applications and markets as identified in this document.

Fire

Neopor® Plus Graphite Polystyrene (GPS) insulation boards are fire and code approved by UL and ICC for ASTM E84, NFPA 285 and NFPA 286 for use in commercial cavity wall with a wide range of cladding approvals.

Finished Neopor® Plus Graphite Polystyrene (GPS) insulation boards manufactured from Neopor® F5300 Plus GPS resins up to a maximum density of 2.0 lbs./ft³ and a maximum thickness of 6 ins. are qualified to bear a label with a flame-spread index of 25 or less and a smoke-developed index of 450 or less when tested in accordance with ANSI/UL723 (ASTM E84), provided the finished boards are listed and labeled by an approved agency.

Neopor® F5300 Plus GPS granules achieve the fire classification Euroclass E according to [DIN EN 13501-1] and according to B1 [DIN 4102-1].

Water

Neopor® Plus Graphite Polystyrene (GPS) insulation boards are chemically neutral and not water soluble. No water-soluble substances are released, which could lead to pollution of ground water, rivers or lakes. Because of the closed cell structure, Neopor® Plus Graphite Polystyrene (GPS) insulation boards can be used even under moist conditions. In the case of unintended water ingress, e.g. through leakage, there is normally no need for replacement of the insulation board. The insulation value of the board remains almost unchanged in moist conditions and the insulation will dry when the source of moisture is removed.

Mechanical destruction

Not relevant for Neopor® Plus GPS based products that have superior mechanical properties.

In summary, a listing of all standards required for testing, evaluation and approval of Neopor® Plus Graphite Polystyrene (GPS) insulation boards for use in the applications and markets identified are:

- ICC-ES Acceptance Criteria for Foam Plastic Insulation (AC12), dated June 2012
- ICC-ES Acceptance Criteria for Quality Documentation (AC10), dated June 2014
- ANSI/UL723 (ASTM E84), Test for Surface Burning Characteristics of Building Materials
- ANSI/UL790 (ASTM E108), Standard Test Methods for Fire Tests of Roof Coverings
- ANSI/UL1256, Standard for Fire Test of Roof Deck Constructions
- ASTM C578, Standard Specification for Rigid, Cellular Polystyrene Thermal Insulation
- UL2818, GREENGUARD Certification Program for Chemical Emissions for Building Materials, Finishes and Furnishings
- NFPA 285, Standard Fire Test for Evaluation of Fire Propagation Characteristics of Exterior Non-Load-Bearing Assemblies Containing Combustible Components
- California Department of Public Health, CDPH/EHLB/Standard Method V.1.1

2.15 Re-use phase

The reuse of GPS foam from production waste has been working for many years and has proven itself very well. Production residues due to cut-outs or edge profiles can be reused in the production plants. However, for this analysis, re-use of GPS scrap was not included in the calculation of the LCA results. For End-of-Life options, construction techniques can be employed to maximize the separation of GPS insulation boards at the end of life of a building to maximize the potential for re-use. Another option for re-use is to leave the GPS insulation boards in place when the existing construction is thermally upgraded.

2.16 Disposal

Finished insulation boards are not regulated by either RCRA or CERCLA. Disposal of Neopor® Plus Graphite Polystyrene (GPS) insulation boards should be in accordance with national, state and local regulations. Product should not be discharged into waterways or sewer systems without proper authorization.

The recycling of GPS waste to produce new GPS insulating materials is possible if a separation of building materials by type is guaranteed. Ground recycled material can easily be used as a lightweight aggregate for mortar and concrete. It is also used as an additive for PS-light concrete, plaster for containment and light plaster as well as in the clay industry.

Recycling of GPS though has not been included in the calculation of the LCA or this EPD.

At the end of its life cycle, Neopor® Plus Graphite Polystyrene (GPS) insulation boards can be disposed of to landfill or thermally incinerated. Embedded energy in GPS insulation boards can be recovered in municipal waste incinerators equipped with energy recovery units for steam and electricity generation and for district heating where available. In this EPD EoL is considered with 100% landfill disposal which is currently the most common practice. Within the landfill modeling, a portion of the landfill gas is collected for combustion via flare or for direct use as steam and/or electricity production. For domestic transportation purposes, this product is not regulated as a hazardous material by the US

Department of Transportation (DOT) under Title 49 of the Code of Federal Regulations.

2.17 Further information

Additional information can be found at <u>http://www.neopor.basf.us/</u> and <u>www.atlaseps.com</u>

3.0 LCA: Calculation rules

3.1 Declared Unit

The declared unit calculated in the LCA is in conformance with EN 15804 and the relevant subcategory PCR (Part B) for Building Envelope Thermal Insulation and is defined as 1 m² of installed Neopor® Plus Graphite Polystyrene (GPS) Type I insulation material with a thickness that gives an average thermal resistance (RSI) of 1 m²*K/W (5.68 ft²*hr.*F/BTU per inch) with a building service life of 75 years (packaging included). Relative to this declared unit, the mass of the described insulation board is 0.433 kg (0.98 lbs.).

Conversion factors are listed in the table below to convert the functional unit to 1 kg and 1 $m^3\, of$ material.

Name	Value	Unit
Functional Unit (FU)	0.98 (0.43)	lbs. (kgs.)
Functional Unit (FU)	1.21 (0.0307)	ins. (m)
Gross density	0.9	lbs./ft ³
Conversion factor to 1 m ³	32.6	-
Conversion factor to 1 kg	2.3	-

3.2 System boundary

Type of EPD: Cradle-to-gate (installation) - with options (end-of-life).

The modules considered in the Life Cycle Assessment are:

- A1: Raw materials supply
- A2: Transport to manufacturer
- A3: Manufacturing
- A4: Transport to construction site
- A5: Assembly
- C1: Demolition
- C2: Transport to waste treatment
- C3: Waste processing
- C4: Disposal
- D: Reuse, recovery or recycling potential

The analysis of the product life cycle includes production of the basic materials, transport of the basic materials, manufacture of the product and the packaging materials and is declared in module A1-A3. Transport of the product is declared in module A4, and disposal of the packaging materials and any insulation trim in module A5. The use stage is not considered in the LCA calculations. The end-of-life scenarios include the transport to end-of-life stage (C2), effort of material treatment (C3) and emissions of landfilling of waste (C4). Due to a non-existing separation of C3 and C4 in the background data, the environmental impacts are shown in sum in module C3/C4. For waste disposal, gained energy from any recovery of landfill gas and subsequent use in generating thermal energy or electricity are declared in module D, beyond the system boundary.

3.3 Estimates and assumptions

All inputs and outputs of the production of Neopor® F5300 Plus GPS resin in Ludwigshafen, Germany by BASF and the production of thermal insulation boards by Atlas EPS in North America, were considered in the calculation. Generic data were used for externally purchased raw materials from suppliers as these materials are not produced by BASF SE or Atlas EPS. Assumptions were made for modules A2, A5, C2 and D. Transport distances of key raw materials to the manufacturing site (A2) were determined using the supplier's postal addresses. For A5 (assembly) around 1.5% installation/construction trim waste was assumed and a distance of 175 miles by diesel truck with an adjusted utilization ratio of 6.7% was used. Credits for the avoided production of electricity and steam in another product system, due to landfill gas recovery, were considered for manufacturing trim waste (A3) and construction waste (A5).

3.4 Cut-off criteria

All major inputs and outputs to processes where data was available related to the scope defined by this assessment were included in the analysis. There was coverage of at least 95 % of mass and energy of the input and output flows, and 98 % of their environmental relevance. There were no critical uncertainties or gaps in the data collection or

assessment process. Primary data of the production processes were considered. In the case of module C1 (deconstruction), insufficient data for the process was available but expert opinion felt the impacts during this module would fall under the cut off criteria of 1% of the total energy or total mass input assessed in this LCA. No known flows were deliberately excluded from the LCA and subsequent EPD.

3.5 Period under review

The period under review for the BASF primary data related to the production of the Neopor® F5300 PLUS GPS resin, was 2017. For the production of Atlas insulation boards featuring Neopor® Plus Graphite Polystyrene (GPS), the period under review was 2014 for the four Atlas EPS manufacturing locations.

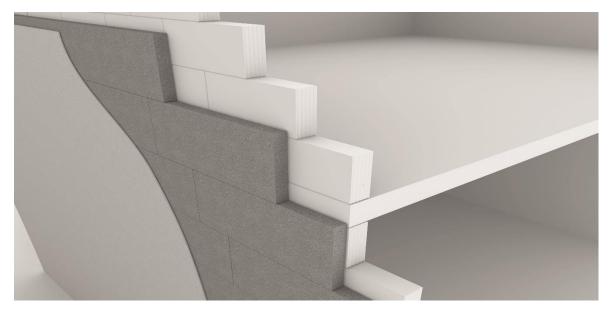
3.6 Allocation

During the production of Atlas insulation board, no coproducts are produced therefore no allocation was necessary for the processes under the manufacturers control. All credits from exported thermal energy or electricity generated at the landfill sites containing packaging or product waste are allocated to module D.

3.7 Comparability

Environmental declarations from different programs (ISO 14025) many not be comparable. Comparison of the environmental performance of thermal insulation using EPD information shall be based on the product's use and impacts at the building level, and therefore EPDs may not be used for comparability purposes when not considering the building energy use phase as instructed under this PCR.

EPD comparability is only possible when all stages of a life cycle have been considered, when they comply with all referenced standards, use the same subcategory PCR, and use equivalent scenarios with respect to construction works. However, some deviations and variations are possible. Example of variations could be different LCA software and background LCI datasets which may lead to different results for upstream or downstream life cycle stages declared.


3.8 Background data

For life cycle modelling of the Neopor® Plus Graphite Polystyrene (GPS) insulation panels, the software solution GaBi ts 8.5 of thinkstep AG was used. Only background data from the GaBi ts 8.5 software were considered in the calculation to ensure the comparability of the results.

3.9 Data quality

For life cycle assessment of the considered products, the GaBi ts Software System for Life Cycle Engineering and GaBi ts database were used. An overall data quality assessment is provided in the table below.

Name of data set	unit	Source	Reference year	Region	Technological Representativeness	Overall Quality Assessment Score
Energy Carriers - Electricity				-		
Heavy fuel oil at refinery from crude oil (1.0wt.% S)	kg	Gabl thinkstep	2014	EU-27	Very Good	Good
Diesel mix at filling station from crude oil and biocomponent	kg	Gabl thinkstep	2014	US	Very Good	Good
Mexico Electricity grid mix AC, technology mix consumption mix, to consumer <1KV	MJ	Gabl thinkstep	2014	Mexico	Good	Good
Electricity grid mix – SRMV	MJ	Gabl thinkstep	2014	SRMV, eGrid	Excellent	Good
Electricity grid mix – RFCM	MJ	Gabl thinkstep	2014	RFCM, eGrid	Excellent	Good
Electricity grid mix – SRVC (without PJM)	MJ	Gabl thinkstep	2014	SRVC, eGrid	Excellent	Good
Electricity grid mix (production mix, US eGRID)	MJ	Gabl thinkstep	2014	US	Excellent	Good
Thermal energy from natural gas (eGrid)	MJ	Gabl thinkstep	2014	US	Excellent	Good
wood chips, from industry, mixed, burned in furnace	MJ	ecolnvent	2000	Switzerland	Good	Good
Thermal energy from LPG technology mix production mix, at heat plant	kg	Gabl thinkstep	2014	US	Good	Good
Transport Heavy Heavy-duty Diesel Truck / 53,333 lb payload - 8b	ice.	Gabi thinkstep	2017	US	Very Good	Good
Container ship, 27500 dwt payload capacity, ocean going	kg	Gabi thinkstep	2017	Global	Good	Good
Container snip, 27500 dwr. payload capacity, ocean going	kg	Gabi triinkstep	2017	Gibbai	GOOU	Good
Rall transport cargo - average, average train, gross tonne weight 1000t / 726t payload capacity	kg	Gabl thinkstep	2018	Global	Good	Good
Material Inputs						
Neopor F 5300 Base Plus resin with additives	kg	BASE	2017	Germany	Excellent	Very Good
Neopor F 5300 Base Plus resin	kg	BASE	2017	Germany	Excellent	Very Good
Packaging						
Polyethylene Film (PE-HD) without additives technology mix	kg	Gabl thinkstep	2014	Germany	Very Good	Good
Corrugated board (2012) technology mix	kg	Gabi thinkstep, FEFCO	2017	EU-27	Good	Good
wooden pallet	kg	BASE	2016	Global	Good	Good
Utility Inputs						
Tap water from groundwater (for regionalization)	kg	Gabl thinkstep	2014	global	Very Good	Good
Ground water, Input regionalization dummy	kg	Gabl thinkstep	2017	global	Very Good	Good
Compressed air 10 bar (medium power consumption) 10 bar, medium efficiency	Nm3	Gabl thinkstep	2014	Global	Good	Good
Lubricants at refinery from crude oil production mix, at refinery	kg	Gabl thinkstep	2014	US	Good	Good
Disposal						
Landfill, wet climate treatment of leachate, production of electricity	kg	Gabl thinkstep	2017	US	Very Good	Good
Plastic waste on landfill, post-consumer	kg	Gabi thinkstep	2017	US	Very Good	Good
Landfill, moderate climate treatment of leachate, production of electricity	kg	Gabl thinkstep	2017	US	Very Good	Good

4.0 LCA: Scenarios and additional technical information

The following technical information is a basis for the declared modules or can be used for developing specific scenarios in the context of a building assessment if modules are not declared (MND). The values refer to the declared functional unit of 1 m² of installed Neopor® Plus Graphite Polystyrene (GPS) insulation material with a thickness that gives an average thermal resistance (RSI) of 1 m²*K/W (5.68 ft²*hr.*F/BTU per inch) with a building service life of 75 years (packaging included).

Transport to the construction site (A4) - by truck

Name	Value	Unit
Truck Type	Heavy Duty Diesel 8b	
Fuel Type	Diesel	
Liters of Fuel	5.6	Miles/gallon
Transport distance	175	miles
Capacity utilization (including empty runs)	6.7*	%
Gross density of products transported	0.9	lbs/ft ³
Capacity utilisation volume factor	1	-

* Adapted according to density Neopor® Plus Graphite Polystyrene (GPS) insulation board

Installation in the building (A5)

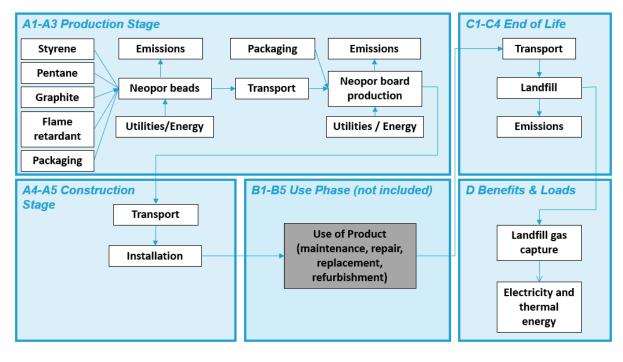
The amount of installation trim waste varies. For the calculation of the environmental impacts of Neopor® Plus Graphite Polystyrene (GPS) insulation material around 1.5% installation waste was considered.

End of life (C1-C4)

Waste disposal for this assessment was determined to be 100% to landfill, per regional practice and PCR Part A guidance. The transport distance to the disposal site is around 100 miles. Some percentage of landfills in the United States, capture a portion of the landfill gas (methane) and produce steam and/or electricity. This results in benefits, beyond the system boundary and is capture in module D.

Reuse, recovery and/or recycling potentials (D),

Module D includes the benefits of the landfill gas capture process.


5.0 LCA: Results

The following tables display the environmental relevant results according to /EN 15804/ for the assessed base case functional unit of: 1 m² of installed Neopor® Plus Graphite Polystyrene (GPS) Type I insulation material with a thickness that gives an average thermal resistance (RSI) of 1 m²*K/W (5.68 ft²*hr.*F/BTU per inch) with a building service life of 75 years (packaging included).

The environmental impact categories reported below are globally deemed mature enough to be included in Type III environmental declarations. Other categories are being developed and defined and LCA should continue making advances in their development, however the EPD users shall not use additional measures for comparative purposes. Additionally, LCIA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks. Finally, many factors affect the comparability of EPDs. End users should be extremely cautious when comparing or evaluating EPD data of different EPD publishers. Such comparison or evaluation is only possible if all conditions for comparability listed in ISO 14025 (Section 6.7.2) are met.

DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; MND = MODULE NOT DECLARED)

PRO	DUCT S	TAGE	CONST ON PRO STA	OCESS			U	SE STAC	ЭΕ			EN	D OF LI	FE STA		BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	nse	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Х	Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	Х	Х	Х	Х	Х

Base Case LCA results for Type I insulation board

RESULTS OF THE LCA - ENVIRONMENTAL IMPACT for a functional unit of 1 m² of installed Neopor® Type I insulation material with a thickness that gives an average thermal resistance (RSI) of 1 m²*K/W (5.68 ft²*hr.*F/BTU per inch) with a building service life of 75 ears (packaging included).

years (pack	aging menua	euj.								
TRACI 2.1		Raw material supply	Transport	Manufacturing	Transport	Construction – Installation	Demolition	Transport	Disposal	Benefits and Loads beyond system boundary
Parameter	Unit	A1	A2	A3	A4	A5	C1	C2	C3/C4	D
GWP	[kg CO2-eq.]	1.15E+00	8.86E-02	4.91E-01	7.56E-02	6.27E-03	0.00E+00	2.25E-02	1.95E-02	-4.38E-04
AP	[kg SO2-eq.]	2.59E-03	1.72E-03	1.15E-03	4.02E-04	3.70E-05	0.00E+00	1.20E-04	3.08E-04	-9.88E-07
EP	[kg N-eq.]	1.62E-04	6.44E-05	8.05E-05	3.18E-05	1.34E-05	0.00E+00	9.46E-06	1.18E-04	-5.08E-08
ODP	[kg CFC11-eq.]	1.28E-10	1.32E-14	3.82E-10	2.59E-15	1.14E-16	0.00E+00	7.72E-16	3.59E-15	-2.53E-14
POCP	[kg O3-eq.]	4.11E-02	3.37E-02	4.72E-02	1.34E-02	4.05E-03	0.00E+00	3.99E-03	2.58E-03	-1.19E-05
ADP _{Fossil}	[MJ, LHV]	5.55E+00	1.50E-01	8.95E-01	1.43E-01	1.37E-03	0.00E+00	4.26E-02	3.90E-02	-5.60E-04
Caption						AP = Acidification p , Abiotic Depletion				

RESULTS OF THE LCA - ENVIRONMENTAL IMPACT for a functional unit of 1 m² of installed Neopor® Type I insulation material with a thickness that gives an average thermal resistance (RSI) of 1 m²*K/W (5.68 ft^{2*}hr.*F/BTU per inch) with a building service life of 75 years (packaging included).

(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
CML 2001 (2016)		Raw material supply	Transport	Manufacturing	Transport	Construction – Installation	Demoliton	Transport	Disposal	Benefits and Loads beyond system boundary
Parameter	Unit	A1	A2	A3	A4	A5	C1	C2	C3/C4	D
GWP	[kg CO ₂ -eq.]	1.16E+00	8.88E-02	4.94E-01	7.57E-02	6.75E-03	0.00E+00	2.25E-02	1.96E-02	-4.41E-04
ODP	[kg CFC11-eq.]	1.04E-10	1.32E-14	3.10E-10	2.59E-15	1.14E-16	0.00E+00	7.72E-16	3.59E-15	-2.38E-14
AP	[kg SO2-eq.]	2.55E-03	1.60E-03	1.10E-03	2.98E-04	1.47E-05	0.00E+00	8.87E-05	2.68E-04	-1.00E-06
EP	[kg PO43eq.]	2.63E-04	1.81E-04	1.41E-04	7.96E-05	1.63E-05	0.00E+00	2.37E-05	1.20E-04	-7.81E-08
POCP	[kg ethene-eq.]	5.83E-04	9.17E-05	8.90E-03	2.93E-05	1.19E-03	0.00E+00	8.74E-06	1.23E-04	-6.62E-08
ADPE	[kg Sb-eq.]	2.81E-07	8.41E-09	1.70E-07	1.38E-08	2.77E-10	0.00E+00	4.11E-09	8.44E-09	-1.24E-10
ADPF	[MJ]	3.98E+01	1.13E+00	7.27E+00	1.07E+00	1.06E-02	0.00E+00	3.17E-01	3.04E-01	-5.86E-03
Caption						f the stratospheric eric ozone photocl				

resources; ADPF = Abiotic depletion potential for fossil resources

	ntal Paramete hat gives an a included).									
		Raw material supply	Transport	Manufacturing	Transport	Construction – Installation	Demolition	Transport	Disposal	Benefits and Loads beyond system boundary
Parameter	Unit	A1	A2	A3	A4	A5	C1	C2	C3/C4	D
PERE	[MJ]	4.81E-01	2.68E-02	1.52E+00	2.65E-02	7.16E-04	0.00E+00	7.89E-03	2.20E-02	5.30E-04
PERM	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	[MJ]	4.81E-01	2.68E-02	1.52E+00	2.65E-02	7.16E-04	0.00E+00	7.89E-03	2.20E-02	5.30E-04
PENRE	[MJ]	2.13E+01	1.17E+00	7.72E+00	1.07E+00	1.09E-02	0.00E+00	3.19E-01	3.12E-01	-6.97E-03
PENRM	[MJ]	1.89E+01	0.00E+00	1.27E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	[MJ]	4.02E+01	1.17E+00	7.85E+00	1.07E+00	1.09E-02	0.00E+00	3.19E-01	3.12E-01	-6.97E-03
SM	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	[MJ]	6.12E-20	3.01E-31	2.13E-12	7.40E-31	2.66E-25	0.00E+00	2.20E-31	8.52E-24	0.00E+00
NRSF	[MJ]	7.19E-19	4.79E-30	2.51E-11	1.18E-29	3.12E-24	0.00E+00	3.51E-30	1.00E-22	0.00E+00
FW	[m³]	3.98E-03	9.33E-05	2.07E-03	1.29E-04	2.01E-06	0.00E+00	3.84E-05	3.78E-05	-1.63E-06

 3.98E-03
 9.33E-05
 2.07E-03
 1.29E-04
 2.01E-06
 0.00E+00
 3.84E-05
 3.78E-05
 -1.63E-06

 PERE = Renewable primary energy as energy carrier, PENM = Renewable primary energy as material utilization, PERT = Total renewable primary energy as energy carrier, PENRM = Non-renewable primary energy as material utilization, PENRT = Total renewable primary energy as material utilization, PENRT = Total renewable primary energy as material utilization, PENRT = Total renewable primary energy as material utilization, PENRT = Total renewable primary energy resources; SM = Use of secondary material; RSF = Renewable secondary fuels; NRSF = Non-renewable secondary fuels;
 Caption FW = Use of net fresh water

insulation m	naterial with	ers from LCA a thickness tl 5 years (pack	hat gives an	average ther						
		Raw material supply	Transport	Manufacturing	Transport	Construction – Installation	Demolition	Transport	Disposal	Benefits and Loads beyond system boundary
Parameter	Unit	A1	A2	A3	A4	A5	C1	C2	C3/C4	D
HWD	[kg]	8.06E-09	3.52E-09	3.58E-09	8.34E-09	4.33E-11	0.00E+00	2.48E-09	1.07E-09	-3.05E-12
NHWD	[kg]	8.16E-02	5.83E-05	3.15E-02	4.03E-05	1.21E-02	0.00E+00	1.20E-05	4.41E-01	-1.67E-06
RWD	[kg]	1.16E-04	1.20E-05	2.12E-04	2.36E-06	1.02E-07	0.00E+00	7.02E-07	3.20E-06	-4.33E-07
CRU	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MFR	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MER	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EEE	[MJ]	0.00E+00	0.00E+00	7.21E-04	0.00E+00	1.15E-03	0.00E+00	0.00E+00	3.98E-03	0.00E+00
EET	[MJ]	0.00E+00	0.00E+00	4.33E-04	0.00E+00	1.27E-03	0.00E+00	0.00E+00	3.53E-03	0.00E+00
Caption				ed; NHWD = Non- ling; MER = Mater						

Besides Type I insluation boards, Neopor® Plus Graphite Polystyrene (GPS) insulation material can also be molded into Type VIII, Type II and Type IX insulation boards. The environmental relevant results for these insulation boards are provided below.

LCA Results for Type VIII insulation board:

LCA Re	esults for T		•								
		OF THE LCA									
	thickness th (packaging	hat gives an a included).	average ther	mal resistanc	ce (RSI) of 1 r	n ² *K/W (5.68	ft ² *hr.*F/BTL	J per inch) w	ith a building	service life	-
TRACI	2.1		Raw material supply	Transport	Manufacturing	Transport	Construction – Installation	Demolition	Transport	Disposal	Benefits and Loads beyond system boundary
Parameter		Unit	A1	A2	A3	A4	A5	C1	C2	C3/C4	D
GWP		[kg CO ₂ -eq.]	1.47E+00	1.13E-01	6.28E-01	9.68E-02	8.03E-03	0.00E+00	2.88E-02	2.50E-02	-5.61E-04
AP		[kg SO2-eq.]	3.32E-03	2.20E-03	1.47E-03	5.15E-04	4.74E-05	0.00E+00	1.54E-04	3.94E-04	-1.26E-06
EP		[kg N-eq.]	2.07E-04	8.24E-05	1.03E-04	4.07E-05	1.72E-05	0.00E+00	1.21E-05	1.51E-04	-6.50E-08
ODP		[kg CFC11-eq.]	1.64E-10	1.69E-14	4.89E-10	3.32E-15	1.46E-16	0.00E+00	9.88E-16	4.60E-15	-3.24E-14
POCP		[kg O ₃ -eq.]	5.26E-02	4.31E-02	6.04E-02	1.72E-02	5.18E-03	0.00E+00	5.11E-03	3.30E-03	-1.52E-05
ADPF		[MJ, LHV]	7.10E+00	1.92E-01	1.15E+00	1.83E-01	1.75E-03	0.00E+00	5.45E-02	4.99E-02	-7.17E-04
Caption					ODP = Ozone de ne photochemical						
		OF THE LCA hat gives an a included).									
CML 20	01 (2016)		Raw material supply	Transport	Manufacturing	Transport	Construction – Installation	Demoliton	Transport	Disposal	Benefits and Loads beyond system boundary
Parameter		Unit	A1	A2	A3	A4	A5	C1	C2	C3/C4	D
GWP		[kg CO ₂ -eq.]	1.48E+00	1.14E-01	6.32E-01	9.69E-02	8.64E-03	0.00E+00	2.88E-02	2.51E-02	-5.64E-04
ODP		[kg CFC11-eq.]	1.33E-10	1.69E-14	3.97E-10	3.32E-15	1.46E-16	0.00E+00	9.88E-16	4.60E-15	-3.05E-14
AP		[kg SO2-eq.]	3.26E-03	2.05E-03	1.41E-03	3.81E-04	1.88E-05	0.00E+00	1.14E-04	3.43E-04	-1.28E-06
EP		[kg PO4 ³⁻ -eq.]	3.37E-04	2.32E-04	1.80E-04	1.02E-04	2.09E-05	0.00E+00	3.03E-05	1.54E-04	-1.00E-07
POCP		[kg ethene-eq.]	7.46E-04	1.17E-04	1.14E-02	3.75E-05	1.52E-03	0.00E+00	1.12E-05	1.57E-04	-8.47E-08
ADPE		[kg Sb-eq.]	3.60E-07	1.08E-08	2.18E-07	1.77E-08	3.55E-10	0.00E+00	5.26E-09	1.08E-08	-1.59E-10
ADPF		[MJ]	5.09E+01	1.45E+00	9.31E+00	1.37E+00	1.36E-02	0.00E+00	4.06E-01	3.89E-01	-7.50E-03
					ential; ODP = Dep - Formation pote					ential of land and lepletion potentia	
Caption		ntal Paramete	ers from LCA	- RESOUR	resour	ces; ADPF = Abio unctional Ur	nit of 1 m ² of i	ntial for fossil res nstalled Neo	ources por [®] Type V		
Caption	with a thick	ntal Paramete ness that giv aging includ	ers from LCA es an averag	- RESOUR	resour	ces; ADPF = Abio unctional Ur	nit of 1 m ² of i	ntial for fossil res nstalled Neo	ources por [®] Type V		
	with a thick	ness that giv aging includ	ers from LCA es an averag ed). Raw material supply	- RESOURO	resour CE USE for F sistance (RS	<u>ces; ADPF = Abic</u> unctional Ur I) of 1 m ² *K/V Transport	nit of 1 m ² of i N (5.68 ft ^{2*} hr.	ntial for fossil res nstalled Neo *F/BTU per in Demolition	ources por [®] Type V nch) with a b Transport	uilding servi	Benefits and Loads beyond system boundary
Parameter	with a thick	ness that giv aging includ Unit	ers from LCA es an averag ed). Raw material supply A1	- RESOURC e thermal res Transport A2	resour CE USE for F sistance (RS Manufacturing A3	ces; ADPF = Abic unctional Ur I) of 1 m ² *K/V Transport A4	nit of 1 m ² of i N (5.68 ft ^{2*} hr. Construction – Installation A5	ntial for fossil res nstalled Neo *F/BTU per in Demolition C1	ources por [®] Type V nch) with a b Transport C2	Disposal	Benefits and Loads beyond system boundary D
Parameter PERE	with a thick	ness that giv aging includ Unit [MJ]	ers from LCA es an averag ed). Raw material supply A1 6.16E-01	- RESOURC thermal res Transport A2 3.43E-02	Manufacturing	ces; ADPF = Abic unctional Ur I) of 1 m ² *K/V Transport A4 3.39E-02	tic depletion pote hit of 1 m ² of i N (5.68 ft ² *hr. Construction – Installation A5 9.16E-04	ntial for fossil res nstalled Neo *F/BTU per in Demolition C1 0.00E+00	ources por [®] Type V nch) with a b Transport C2 1.01E-02	Disposal C3/C4 2.82E-02	Benefits and Loads beyond system boundary D 6.78E-04
Parameter PERE PERM	with a thick	ness that giv aging includ Unit [MJ] [MJ]	ers from LCA es an averag ed). Raw material supply A1 6.16E-01 0.00E+00	- RESOURC te thermal res Transport A2 3.43E-02 0.00E+00	CE USE for F sistance (RS Manufacturing A3 1.95E+00 0.00E+00	ces; ADPF = Abic unctional Ur I) of 1 m ² *K/V Transport A4 3.39E-02 0.00E+00	titic depletion pote hit of 1 m ² of i V (5.68 ft ² *hr. Construction – Installation A5 9.16E-04 0.00E+00	ntial for fossil res nstalled Neo *F/BTU per in Demolition C1 0.00E+00 0.00E+00	ources por [®] Type V nch) with a b Transport C2 1.01E-02 0.00E+00	C3/C4 0.00E+00	Benefits and Loads beyond system boundary D 6.78E-04 0.00E+00
Parameter PERE PERM PERT	with a thick	Unit [MJ] [MJ] [MJ]	At 6.16E-01 0.00E+00 6.16E-01	- RESOURC e thermal re- Transport A2 3.43E-02 0.00E+00 3.43E-02	CE USE for F sistance (RS Manufacturing A3 1.95E+00 0.00E+00 1.95E+00	APF = Abic unctional Ur unctional Ur unctional Ur i) of 1 m ² *K/V Transport A4 3.39E-02 0.00E+00 3.39E-02	titic depletion pote it of 1 m ² of i V (5.68 ft ²⁻ hr. Construction – Installation A5 9.16E-04 0.00E+00 9.16E-04	Demolition C1 0.00E+00 0.00E+00 0.00E+00	ources por® Type V nch) with a b Transport C2 1.01E-02 0.00E+00 1.01E-02	C3/C4 2.82E-02 0.00E+00 2.82E-02	Benefits and Loads beyond system boundary D 6.78E-04 0.00E+00 6.78E-04
Parameter PERE PERM PERT PENRE	with a thick	ness that giv aging includ Unit [MJ] [MJ] [MJ] [MJ]	All 6.16E-01 0.00E+00 6.16E-01 0.00E+00 6.16E-01 2.72E+01	- RESOUR(e thermal re- Transport A2 3.43E-02 0.00E+00 3.43E-02 1.50E+00	A3 1.95E+00 0.00E+00 1.95E+00 9.89E+00 9.89E+00	APF = Abic unctional Ur unctional Ur unctional Ur i) of 1 m ²⁺ K/V Transport A4 3.39E-02 0.00E+00 3.39E-02 1.37E+00	State State 0	Demolition C1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	ources por® Type V nch) with a b Transport C2 1.01E-02 0.00E+00 1.01E-02 4.08E-01	Uilding servi Disposal C3/C4 2.82E-02 0.00E+00 2.82E-02 3.99E-01	Denefits and Loads beyond system boundary D 6.78E-04 0.00E+00 6.78E-04 -8.92E-03
Parameter PERE PERM PERT PENRE PENRM	with a thick	Unit [MJ] [MJ] [MJ] [MJ] [MJ] [MJ]	Al 6.16E-01 0.00E+00 6.16E-01 2.72E+01 2.42E+01	- RESOUR(e thermal re: Transport A2 3.43E-02 0.00E+00 3.43E-02 1.50E+00 0.00E+00	A3 1.95E+00 0.00E+00 1.95E+00 9.89E+00 1.62E-01	APF = Abic unctional Ur unctional Ur unctional Ur i) of 1 m ^{2*} K/V Transport A4 3.39E-02 0.00E+00 3.39E-02 1.37E+00 0.00E+00	titic depletion pote it of 1 m ² of i V (5.68 ft ²⁺ hr. Construction – Installation A5 9.16E-04 0.00E+00 9.16E-04 1.40E-02 0.00E+00	Demolition C1 0.00E+00	ources por® Type V nch) with a b Transport C2 1.01E-02 0.00E+00 1.01E-02 4.08E-01 0.00E+00	C3/C4 2.82E-02 0.00E+00 2.82E-02 3.99E-01 0.00E+00	Denefits and Loads beyond ysystem boundary D 6.78E-04 0.00E+00 6.78E-04 -8.92E-03 0.00E+00
Parameter PERE PERM PERT PENRE PENRM PENRT	with a thick	Unit [MJ] [MJ] [MJ] [MJ] [MJ] [MJ] [MJ]	All 6.16E-01 0.00E+00 6.16E-01 0.00E+00 6.16E-01 2.72E+01	- RESOUR(e thermal re- Transport A2 3.43E-02 0.00E+00 3.43E-02 1.50E+00	A3 1.95E+00 0.00E+00 1.95E+00 9.89E+00 9.89E+00	APF = Abic unctional Ur unctional Ur unctional Ur i) of 1 m ²⁺ K/V Transport A4 3.39E-02 0.00E+00 3.39E-02 1.37E+00	State State 0	Demolition C1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	ources por® Type V nch) with a b Transport C2 1.01E-02 0.00E+00 1.01E-02 4.08E-01	Uilding servi Disposal C3/C4 2.82E-02 0.00E+00 2.82E-02 3.99E-01	Denefits and Loads beyond system boundary D 6.78E-04 0.00E+00 6.78E-04 -8.92E-03
Parameter PERE PERM PERT PENRE PENRM PENRT SM	with a thick	Unit [MJ] [MJ] [MJ] [MJ] [MJ] [MJ]	Al 6.16E-01 0.00E+00 6.16E-01 2.72E+01 2.42E+01 5.15E+01	- RESOUR(e thermal resource) Transport A2 3.43E-02 0.00E+00 3.43E-02 1.50E+00 0.00E+00 1.50E+00	A3 1.95E+00 0.00E+00 1.95E+00 1.95E+00 0.00E+00 1.95E+00 1.95E+00 1.95E+00 1.95E+00 1.95E+01 1.62E-01 1.00E+01 1.00E+01	APF = Abic unctional Ur unctional Ur unctional Ur unctional Ur unctional Ur unctional Ur Transport A4 3.39E-02 0.00E+00 3.39E-02 1.37E+00 0.00E+00 1.37E+00	Action Action 0.00E+00 9.16E-04 0.00E+00 9.16E-04 1.40E-02 0.00E+00 1.40E-02 1.40E-02	Operation Operation C1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	ources por [®] Type V hch) with a b Transport C2 1.01E-02 0.00E+00 1.01E-02 4.08E-01 0.00E+00 4.08E-01	Uilding servi Disposal C3/C4 2.82E-02 0.00E+00 2.82E-02 3.99E-01 0.00E+00 3.99E-01	Denefits and Loads beyond system boundary D 6.78E-04 0.00E+00 6.78E-04 -8.92E-03 0.00E+00 -8.92E-03
Parameter PERE PERM PERT PENRE PENRM PENRT SM RSF	with a thick	Ness that giv aging includ [MJ] [MJ] [MJ] [MJ] [MJ] [MJ] [MJ]	Al 6.16E-01 0.00E+00 6.16E-01 2.72E+01 2.42E+01 5.15E+01 0.00E+00	- RESOURC te thermal resident for the second	A3 1.95E+00 0.00E+00 1.85E+00 0.00E+00 1.95E+00 0.89E+00 1.62E-01 1.00E+01 0.00E+00	APF = Abic unctional Ur unctional Ur unctional Ur unctional Ur unctional Ur unctional Ur Transport A4 3.39E-02 0.00E+00 3.39E-02 1.37E+00 0.00E+00 1.37E+00 0.00E+00	State State 0.00E+00 1.40E-02	Operation Operation C1 0.00E+00 0.00E+00 0.00E+00	ources por® Type V hch) with a b Transport C2 1.01E-02 0.00E+00 1.01E-02 4.08E-01 0.00E+00 4.08E-01 0.00E+00	Uilding servi Disposal C3/C4 2.82E-02 0.00E+00 2.82E-02 3.99E-01 0.00E+00 3.99E-01 0.00E+00	Denefits and Loads beyond system boundary D 6.78E-04 0.00E+00 6.78E-04 -8.92E-03 0.00E+00 -8.92E-03 0.00E+00
Parameter PERE PERM PERT PENRE PENRM PENRT SM RSF NRSF	with a thick	Ness that giv aging includ (MJ) (MJ) (MJ) (MJ) (MJ) (MJ) (MJ) (MJ)	Al 6.16E-01 0.00E+00 6.16E-01 2.72E+01 2.42E+01 5.15E+01 0.00E+00 7.83E-20	- RESOURC e thermal res Transport A2 3.43E-02 0.00E+00 3.43E-02 1.50E+00 0.00E+00 1.50E+00 0.00E+00 3.85E-31	A3 1.95E+00 0.00E+00 1.85E+00 0.00E+00 1.82E-01 1.00E+01 0.00E+00	APF = Abic unctional Ur unctional Ur unctional Ur of 1 m ²⁺ K/V Transport A4 3.39E-02 0.00E+00 3.39E-02 1.37E+00 0.00E+00 1.37E+00 0.00E+00 9.47E+31	titic depletion pote it of 1 m ² of i V (5.68 ft ²⁺ hr. Construction – Installation A5 9.16E-04 0.00E+00 9.16E-04 1.40E-02 0.00E+00 1.40E-02 0.00E+00 3.40E-25	Operation Operation C1 0.00E+00 0.00E+00 0.00E+00	ources por [®] Type V hch) with a b Transport C2 1.01E-02 0.00E+00 1.01E-02 4.08E-01 0.00E+00 4.08E-01 0.00E+00 2.82E-31	Uilding servi Disposal 2.82E-02 0.00E+00 2.82E-02 3.99E-01 0.00E+00 3.99E-01 0.00E+00 1.09E-23	Benefits and Loads beyond system boundary D 6.78E-04 0.00E+00 6.78E-04 -8.92E-03 0.00E+00 -8.92E-03 0.00E+00 -8.92E-03 0.00E+00
Parameter PERE PERM PERT PENRE PENRT SM RSF RSF NRSF FW	with a thick	Ness that giv aging includ (MJ) (MJ) (MJ) (MJ) (MJ) (MJ) (MJ) (MJ)	Al 6.16E-01 0.00E+00 6.16E-01 2.72E+01 2.42E+01 5.15E+01 0.00E+00 7.83E-20 9.20E-19 5.09E-03 PERE = Renew PERE = Renew	- RESOUR(e thermal re: Transport A2 3.43E-02 0.00E+00 3.43E-02 1.50E+00 0.00E+00 1.50E+00 0.00E+00 3.85E-31 6.13E-30 1.19E-04 able primary enel NEE = Non-renev	A3 1.95E+00 0.00E+00 1.95E+00 0.00E+00 1.82E-01 1.00E+01 0.00E+00 2.73E-12 3.21E-11	APF = Abic unctional Ur Transport A4 3.39E-02 0.00E+00 3.39E-02 1.37E+00 0.00E+00 9.47E-31 1.51E-29 1.65E-04 er, PERM = Renergy as energy ca eo fescondary n	titic depletion pote it of 1 m ² of i V (5.68 ft ²⁺ hr. Construction – Installation A5 9.16E-04 0.00E+00 9.16E-04 1.40E-02 0.00E+00 1.40E-02 0.00E+00 3.40E-25 3.99E-24 2.57E-06 ewable primary eff rifer, PENRM = NK	Demolition C1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	ources por® Type V nch) with a b Transport C2 1.01E-02 0.00E+00 1.01E-02 4.08E-01 0.00E+00 4.08E-01 0.00E+00 2.82E-31 4.49E-30 4.92E-05 utilization; PERT any energy as m	Disposal C3/C4 2.82E-02 0.00E+00 2.82E-02 3.99E-01 0.00E+00 3.99E-01 0.00E+00 1.99E-01 0.00E+00 1.99E-01 0.00E+00 1.99E-23 1.28E-22 4.84E-05 = Total renewabl aterial utilization;	Benefits and Loads beyond system boundary D 6.78E-04 0.00E+00 6.78E-04 -8.92E-03 0.00E+00 -8.92E-03 0.00E+00 -0.00E+00 -0.00E+00 0.00E+00 0.00E+00 -2.09E-06 e primary energy PENRT = Total
Parameter PERE PERM PERT PENRE PENRT SM RSF RSF NRSF FW	Environmer	Ness that giv aging includ (MJ) (MJ) (MJ) (MJ) (MJ) (MJ) (MJ) (MJ)	A1 6.16E-01 0.00E+00 6.16E-01 0.00E+00 6.16E-01 2.72E+01 2.42E+01 5.15E+01 0.00E+00 7.83E-20 9.20E-19 5.09E-03 PERE = Renew resources, PEI non-renewable ers from LCA	- RESOUR(e thermal re- Transport A2 3.43E-02 0.00E+00 3.43E-02 1.50E+00 0.00E+00 1.50E+00 0.00E+00 3.85E-31 6.13E-30 1.19E-04 able primary energy re - OUTPUT F ss that gives	A3 1.95E+00 0.00E+00 1.95E+00 0.00E+00 1.95E+00 0.89E+00 1.62E-01 1.00E+01 0.00E+00 2.321E-11 2.65E-03 rgy as energy carr vaburces; SM = Usset FLOWS & WAP an average 1	APF = Abic unctional Ur Transport A4 3.39E-02 0.00E+00 3.39E-02 1.37E+00 0.00E+00 9.47E-31 1.51E-29 1.65E-04 ier, FERM = Ren- rgy as energy ca e of scondary n FW = STE CA TEC	titic depletion pote it of 1 m ² of i V (5.68 ft ²⁻ hr. Construction – Installation A5 9.16E-04 0.00E+00 9.16E-04 1.40E-02 0.00E+00 1.40E-02 0.00E+00 1.40E-02 0.00E+00 3.40E-25 3.99E-24 2.57E-06 ewable primary en rritery, PENRM = N, aterial; RSF = RG Use of net fresh CORIE S for Fi	Demolition C1 0.00E+00 owater	ources por® Type V nch) with a b Transport C2 1.01E-02 0.00E+00 1.01E-02 4.08E-01 0.00E+00 4.08E-01 0.00E+00 2.82E-31 4.49E-30 4.92E-05 utilization; PERT mary energy as m ary fuels; NRSF = it of 1 m² of i	Disposal C3/C4 2.82E-02 0.00E+00 2.82E-02 3.99E-01 0.00E+00 3.99E-01 0.00E+00 1.98E-23 1.28E-22 4.84E-05 = Total renewable aterial utilization; Non-renewable	Benefits and Loads beyond system boundary D 0 0 0 0 0 0 0 0 0 0 0.78E-04 -8.92E-03 0.00E+00 -8.92E-03 0.00E+00 0.00E+00 0.00E+00 -2.09E-06 e primary energy PENRT = Total secondary fuels; por [®] Type h) with a
Parameter PERE PERM PERT PENRE PENRT SM RSF RSF NRSF FW	Environmer	Ness that giv aging includ (MJ) (MJ) (MJ) (MJ) (MJ) (MJ) (MJ) (MJ)	A1 6.16E-01 0.00E+00 6.16E-01 0.00E+00 6.16E-01 2.72E+01 2.42E+01 5.15E+01 0.00E+00 7.83E-20 9.20E-19 5.09E-03 PERE = Renew resources, PEI non-renewable ers from LCA	- RESOUR(e thermal re- Transport A2 3.43E-02 0.00E+00 3.43E-02 1.50E+00 0.00E+00 1.50E+00 0.00E+00 3.85E-31 6.13E-30 1.19E-04 able primary energy re - OUTPUT F ss that gives	A3 1.95E+00 0.00E+00 1.95E+00 0.00E+00 1.95E+00 0.89E+00 1.62E-01 1.00E+01 0.00E+00 2.321E-11 2.65E-03 rgy as energy carr vaburces; SM = Usset FLOWS & WAP an average 1	APF = Abic unctional Ur Transport A4 3.39E-02 0.00E+00 3.39E-02 1.37E+00 0.00E+00 9.47E-31 1.51E-29 1.65E-04 ier, FERM = Ren- rgy as energy ca e of scondary n FW = STE CA TEC	titic depletion pote it of 1 m ² of i V (5.68 ft ²⁻ hr. Construction – Installation A5 9.16E-04 0.00E+00 9.16E-04 1.40E-02 0.00E+00 1.40E-02 0.00E+00 1.40E-02 0.00E+00 3.40E-25 3.99E-24 2.57E-06 ewable primary en rritery, PENRM = N, aterial; RSF = RG Use of net fresh CORIE S for Fi	Demolition C1 0.00E+00 owater	ources por® Type V nch) with a b Transport C2 1.01E-02 0.00E+00 1.01E-02 4.08E-01 0.00E+00 4.08E-01 0.00E+00 2.82E-31 4.49E-30 4.92E-05 utilization; PERT mary energy as m ary fuels; NRSF = it of 1 m² of i	Disposal C3/C4 2.82E-02 0.00E+00 2.82E-02 3.99E-01 0.00E+00 3.99E-01 0.00E+00 1.98E-23 1.28E-22 4.84E-05 = Total renewable aterial utilization; Non-renewable	Denefits and Loads beyond system boundary D 6.78E-04 0.00E+00 6.78E-04 -8.92E-03 0.00E+00 -8.92E-03 0.00E+00 -0.00E+00 -2.09E-06 e primary energy PENRT = Total secondary fuels;
Parameter PERE PERM PERT PENRE PENRT SM RSF SM RSF FW Caption Parameter	Environmer	Intersteen the set of	A1 6.16E-01 0.00E+00 6.16E-01 0.00E+00 6.16E-01 2.72E+01 2.42E+01 2.42E+01 0.00E+00 7.83E-20 9.20E-19 5.09E-03 PERE = Renew resources; PEI res from LCA sith a thicknes 5 years (pack Raw material supply A1	- RESOURC e thermal re- Transport A2 3.43E-02 0.00E+00 3.43E-02 1.50E+00 0.00E+00 1.50E+00 0.00E+00 3.85E-31 6.13E-30 1.19E-04 able primary energy re primary energy re ss that gives taging include Transport A2	resour CE USE for F sistance (RS Manufacturing A3 1.95E+00 0.00E+00 1.95E+01 1.00E+01 0.00E+00 2.73E+12 3.21E+11 2.65E-03 rgy as energy carr sources; SM = UE Sources; SM = UE Sources; SM = UE Manufacturing A3	ces; ADPF = Abic unctional Ur unctiour unctiour	tite depletion pote it of 1 m ² of i V (5.68 ft ²⁻ hr. Construction – Installation A5 9.16E-04 0.00E+00 9.16E-04 1.40E-02 0.00E+00 3.40E-25 3.99E-24 2.57E-06 ewable primary enrier, PENRM = NG ORIES for Fistance (RSI) of Construction – Installation	Initial for fossil res Installed Neo *F/BTU per in Demolition C1 0.00E+00 0.00E+00	ources por® Type V nch) with a b Transport C2 1.01E-02 0.00E+00 1.01E-02 4.08E-01 0.00E+00 2.82E-31 4.49E-30 4.92E-05 utilization; PERT mary energy as may fuels; NRSF = it of 1 m² of i 5.68 ft²-hr.*Fr Transport C2	uilding servi Disposal C3/C4 2.82E-02 0.00E+00 2.82E-02 3.99E-01 0.00E+00 3.99E-01 0.00E+00 1.09E-23 1.28E-22 4.84E-05 = Total renewable nstalled Nec (BTU per inc Disposal C3/C4	Denefits and Loads beyond system boundary D 6.78E-04 0.00E+00 6.78E-04 -8.92E-03 0.00E+00 -8.92E-03 0.00E+00 -2.09E+00 -2.09E+06 eprimary energy PENRT = Total secondary fuels; por® Type h) with a Benefits and Loads beyond system boundary D
Parameter PERE PERM PERT PENRE PENRM PENRT SM RSF SM RSF FW Caption Caption Parameter HWD	Environmer	Interview of the set o	A1 6.16E-01 0.00E+00 6.16E-01 0.00E+00 6.16E-01 2.72E+01 2.42E+01 5.15E+01 0.00E+00 7.83E-20 9.20E-19 5.09E-03 PERE = Renew resources; PEI non-renewable st thickness 5 years (pack Raw material supply A1 1.03E-08	- RESOURC e thermal re- Transport A2 3.43E-02 0.00E+00 3.43E-02 1.50E+00 0.00E+00 3.38E-31 6.13E-30 1.19E-04 able primary energy re- primary energy re- primary energy re- courput re- ss that gives caging include Transport A2 4.51E-09	resour CE USE for F sistance (RS Manufacturing A3 1.95E+00 0.00E+00 1.82E-01 1.00E+01 2.73E-12 3.21E-11 2.65E-03 rgy as energy carr vable primary energy carr an average for a sources; SM = Us Ledd). Manufacturing A3 4.58E-09	ces; ADPF = Abic unctional Ur unctional	tite depletion pote it of 1 m ² of i V (5.68 ft ²⁻ hr. Construction – Installation A5 9.16E-04 0.00E+00 9.16E-04 1.40E-02 0.00E+00 3.40E-25 3.99E-24 2.57E-06 ewable primary enrine; PENRM = NL construction – installation Construction – installation A5 5.54E-11	Initial for fossil res Installed Neo *F/BTU per in Demolition C1 0.00E+00 Demolition C1 0.00E+00	ources por® Type V nch) with a b Transport C2 1.01E-02 0.00E+00 1.01E-02 4.08E-01 0.00E+00 4.08E-01 0.00E+00 2.82E-31 4.49E-30 4.92E-05 utilization; PERT mary fuels; NRSF = it of 1 m² of i 5.68 ft²-hr.*Fr Transport C2 3.17E-09	Uilding servi Disposal C3/C4 2.82E-02 0.00E+00 2.82E-02 3.99E-01 0.00E+00 3.99E-01 0.00E+00 1.09E-23 1.28E-22 4.84E-05 = Total renewable nstalled Nec BTU per inc Disposal C3/C4 1.37E-09	Denefits and Loads beyond system boundary D 6.78E-04 0.00E+00 6.78E-04 -8.92E-03 0.00E+00 -8.92E-03 0.00E+00 -2.09E-06 erfimary energy PENRT = Total secondary fuels; por® Type h) with a Benefits and Loads beyond system boundary D -3.90E-12
Parameter PERE PERM PERT PENRE PENRM PENRT SM RSF RV Caption Parameter HWD NHWD	Environmer	Interview of the second	A1 6.16E-01 0.00E+00 6.16E-01 0.00E+00 6.16E-01 2.72E+01 2.42E+01 5.15E+01 0.00E+00 7.83E-20 9.20E-19 5.09E-03 PERE = Renew resources, PEI non-renewable cs from LCA ct thicknew 5 years (pack Raw material supply A1 1.03E-08 1.04E-01	- RESOUR(e thermal re- Transport A2 3.43E-02 0.00E+00 3.43E-02 1.50E+00 0.00E+00 1.50E+00 0.00E+00 1.50E+00 0.00E+00 3.85E-31 6.13E-30 1.19E-04 able primary energy re - SUTPUT I ss that gives staging includ Transport A2 4.51E-09 7.46E-05	resour CE USE for F sistance (RS Manufacturing A3 1.95E+00 0.00E+00 1.95E+00 9.89E+00 1.62E-01 1.00E+01 0.00E+00 2.73E-12 3.21E-11 2.65E-03 rgy as energy carr wable primary energy carr sources: SM = Use FLOWS & WA an average for ided). Manufacturing A3 4.58E-09 4.03E-02	ces; ADPF = Abic unctional Ur unctional	tite depletion pote iit of 1 m ² of i V (5.68 ft ²⁻ hr. Construction – Installation A5 9.16E-04 0.00E+00 9.16E-04 1.40E-02 0.00E+00 1.40E-02 0.00E+00 3.40E-25 3.99E-24 2.57E-06 ewable primary et rifrer, PENRM = NK. GORIES for Fits GORIES for Fits Construction – Installation A5 5.54E-11 1.55E-02	ntial for fossil res nstalled Neo *F/BTU per in Demolition C1 0.00E+00	ources por® Type V nch) with a b Transport C2 1.01E-02 0.00E+00 1.01E-02 4.08E-01 0.00E+00 4.08E-01 0.00E+00 4.08E-01 0.00E+00 2.82E-31 4.49E-30 4.92E-05 utilization; PERT nary energy as m ary fuels; NRSF = it of 1 m ² of i 5.68 ft ² -hr.*Fr Transport C2 3.17E-09 1.54E-05	uilding servi Disposal C3/C4 2.82E-02 0.00E+00 2.82E-02 3.99E-01 0.00E+00 3.99E-01 0.00E+00 1.99E-01 0.00E+00 1.99E-01 0.00E+00 1.99E-23 1.28E-22 4.84E-05 = Total renewable nstalled Neo /BTU per inc Disposal C3/C4 1.37E-09 5.64E-01	Denefits and Loads beyond system boundary D 6.78E-04 0.00E+00 6.78E-04 0.00E+00 6.78E-03 0.00E+00 -8.92E-03 0.00E+00 -2.09E-06 e primary energy PENRT = Total secondary fuels; por® Type h) with a Benefits and Loads beyond system boundary D -3.90E-12 -2.14E-06
Parameter PERE PERM PERT PENRE PENRM PENRT SM Caption Caption Parameter HWD NHWD RWD	Environmer	ness that giv aging includ [MJ] [MJ] [MJ] [MJ] [MJ] [MJ] [MJ] [MJ]	A1 6.16E-01 0.00E+00 6.16E-01 2.72E+01 2.42E+01 5.15E+01 0.00E+00 7.83E-20 9.20E-19 5.09E-03 PERE = Renew resources; PEI non-renewable ers from LCA th a thicknee 5.94E-03 PERE = Renew resources; PEI non-renewable ers from LCA th a thicknee 5.94E-03 PERE = Renew resources; PEI non-renewable ers from LCA th a thicknee 5.94E-03 ers from LCA th a thicknee 5.94E-03 ers from LCA Raw material supply A1 1.03E-08 1.04E-01 1.48E-04	- RESOURC e thermal re- Transport A2 3.43E-02 0.00E+00 3.43E-02 1.50E+00 0.00E+00 1.50E+00 0.00E+00 1.50E+00 0.00E+00 3.85E-31 6.13E-30 1.19E-04 able primary energy re - OUTPUT F ss that gives raging includ Transport A2 4.51E-09 7.46E-05 1.54E-05	Tesour CE USE for F sistance (RS Manufacturing A3 1.95E+00 0.00E+00 1.95E+00 9.89E+00 1.62E-01 1.00E+01 0.00E+00 2.73E-12 3.21E-11 2.65E-03 rgy as energy carr wable primary energicarr sources; SM = Use FLOWS & WAR an average for Manufacturing A3 4.58E-09 4.03E-02 2.71E-04	ces; ADPF = Abic unctional Ur unctiout unctiout	tite depletion pote it of 1 m ² of i V (5.68 ft ²⁻ hr. Construction – Installation A5 9.16E-04 0.00E+00 9.16E-04 1.40E-02 0.00E+00 9.16E-04 1.40E-02 0.00E+00 3.40E-25 3.39E-24 2.57E-06 ewable primary entrier, PENRM = Nr. aterial; RSF -06 Construction – Installation A5 5.54E-11 1.55E-02 1.31E-07	Initial for fossil res Installed Neo *F/BTU per in Demolition C1 0.00E+00	ources por® Type V nch) with a b Transport C2 1.01E-02 0.00E+00 1.01E-02 4.08E-01 0.00E+00 4.08E-01 0.00E+00 2.82E-31 4.49E-30 4.92E-05 utilization; PERT mary energy as m ary fuels; NRSF = it of 1 m ² of i 5.68 ft ²⁺ hr.*Fr. Transport C2 3.17E-09 1.54E-05 8.99E-07	uilding servi Disposal C3/C4 2.82E-02 0.00E+00 2.82E-02 3.99E-01 0.00E+00 3.99E-01 0.00E+00 1.99E-01 0.00E+00 1.98E-22 4.84E-05 = Total renewable nstalled Neo /BTU per inc Disposal C3/C4 1.37E-09 5.64E-01 4.10E-06	Denefits and Loads beyond system boundary D 6.78E-04 0.00E+00 6.78E-04 -8.92E-03 0.00E+00 -8.92E-03 0.00E+00 -8.92E-03 0.00E+00 -2.09E-06 e primary energy PENRT = Total secondary fuels; por [®] Type h) with a Benefits and Loads beyond system boundary D -3.90E-12 -2.14E-06 -5.54E-07
Parameter PERE PERM PERT PENRE PENRM PENRT SM RSF FW Caption Parameter HWD NHWD RWD CRU	Environmer	ness that giv aging includ [MJ] [MJ] [MJ] [MJ] [MJ] [MJ] [MJ] [MJ]	A1 6.16E-01 0.00E+00 6.16E-01 2.72E+01 2.42E+01 5.15E+01 0.00E+00 7.33E-20 9.20E-19 5.09E-03 PERE = Renew resources; PEI non-renewable est from LCA th a thicknee 5.94E-03 PERE = Renew resources; PEI non-renewable est from LCA th a thicknee 5.94E-03 PERE = Renew resources; PEI non-renewable est from LCA th a thicknee 5.94E-03 peas est for LCA th a thicknee 5.94E-03 est for LCA th a thicknee 5.94E-03 peas 6.04E-01 1.04E-01 1.48E-04 0.00E+00	- RESOURC e thermal re- Transport A2 3.43E-02 0.00E+00 3.43E-02 1.50E+00 0.00E+00 1.50E+00 0.00E+00 1.50E+01 0.00E+00 0.00E+00 1.9E-04 able primary energy re - OUTPUT F ss that gives that gives that gives that gives aging includ Transport A2 4.51E-09 7.46E-05 1.54E-05 0.00E+00	Tesour CE USE for F sistance (RS Manufacturing A3 1.95E+00 0.00E+00 1.95E+00 9.89E+00 1.62E-01 1.00E+01 0.00E+00 2.73E-12 3.21E-11 2.65E-03 rgy as energy carr wable primary energicarr sources, SM = Use FLOWS & WAR an average for Manufacturing A3 4.58E-09 4.03E-02 2.71E-04 0.00E+00	ces; ADPF = Abic unctional Ur uncotisetee unctional U	tite depletion pote it of 1 m ² of i V (5.68 ft ²⁻ hr. Construction – Installation A5 9.16E-04 0.00E+00 9.16E-04 1.40E-02 0.00E+00 9.16E-04 1.40E-02 0.00E+00 1.40E-02 0.00E+00 3.40E-25 3.99E-24 2.57E-06 ewable primary entrier, PENRM = Nenaterial; RSF - 06 GORIE S for Fitstance (RSI) of 5.54E-11 1.55E-02 1.31E-07 0.00E+00	ntial for fossil res nstalled Neo *F/BTU per in Demolition C1 0.00E+00	ources por® Type V nch) with a b Transport C2 1.01E-02 0.00E+00 1.01E-02 4.08E-01 0.00E+00 4.08E-01 0.00E+00 4.08E-01 0.00E+00 4.92E-31 4.49E-30 4.92E-05 utilization; PERT ary fuels; NRSF = it of 1 m ² of i 5.68 ft ²⁺ hr.*Fr. Transport C2 3.17E-09 1.54E-05 8.99E-07 0.00E+00	uilding servi Disposal C3/C4 2.82E-02 0.00E+00 2.82E-02 3.99E-01 0.00E+00 3.99E-01 0.00E+00 1.99E-23 1.28E-22 4.84E-05 = Total renewable nstalled Neco /BTU per inc /BTU per inc Disposal C3/C4 1.37E-09 5.64E-01 4.10E-06 0.00E+00	Denefits and Loads beyond system boundary D 6.78E-04 0.00E+00 6.78E-04 0.00E+00 6.78E-04 0.00E+00 8.92E-03 0.00E+00 -2.09E-06 e primary energy Port Type h) with a Benefits and Loads beyond system boundary D -3.90E-12 -2.14E-06 -5.54E-07 0.00E+00
Parameter PERE PERM PERT PENRE PENRT SM RSF SM Caption Caption Parameter HWD NHWD RWD CRU	Environmer	Interest that giv aging includ (MJ) (MJ) (MJ) (MJ) (MJ) (MJ) (MJ) (MJ)	A1 6.16E-01 0.00E+00 6.16E-01 2.72E+01 2.42E+01 5.15E+01 0.00E+00 6.16E-01 2.72E+01 2.42E+01 5.15E+01 0.00E+00 7.83E-20 9.20E-19 5.09E-03 PERE = Renew resources; PEI non-renewable ers from LCA ith a thicknew 5 years (pack Raw material supply A1 1.03E-08 1.04E-01 1.48E-04 0.00E+00 0.00E+00	- RESOURC e thermal re- Transport A2 3.43E-02 0.00E+00 3.43E-02 1.50E+00 0.00E+00 1.50E+00 0.00E+00 0.00E+00 1.50E+00 0.00E+00 1.50E-31 6.13E-30 1.19E-04 able primary energy re - OUTPUT F ss that gives aging includ Transport A2 4.51E-09 7.46E-05 1.54E-05 0.00E+00 0.00E+00	Tesour CE USE for F sistance (RS Manufacturing A3 1.95E+00 0.00E+00 1.95E+00 9.89E+00 1.62E-01 1.00E+01 0.00E+00 2.73E-12 3.21E-11 2.65E-03 rgy as energy carr wable primary energy carr as an average f fed). Manufacturing A3 4.58E-09 4.03E-02 2.71E-04 0.00E+00 0.00E+00	ces; ADPF = Abic unctional Ur i) of 1 m ² K/V Transport A4 3.39E-02 0.00E+00 3.39E-02 1.37E+00 0.00E+00 1.37E+00 0.00E+00 1.37E+00 0.00E+00 1.37E+00 0.00E+00 1.37E+01 0.00E+00 9.47E-31 1.55E-04 ter, PERM = Reningry as energy carsis energy	tite depletion pote it of 1 m ² of i V (5.68 ft ²⁻ hr. Construction – Installation A5 9.16E-04 0.00E+00 9.16E-04 1.40E-02 0.00E+00 9.16E-04 1.40E-02 0.00E+00 1.40E-02 0.00E+00 3.09E-24 2.57E-06 ewable primary errirer, PENRM = Nenaterial; RSF = Nenaterial; RS	ntial for fossil res nstalled Neo *F/BTU per in Demolition C1 0.00E+00	ources por® Type V nch) with a b Transport C2 1.01E-02 0.00E+00 1.01E-02 4.08E-01 0.00E+00 4.08E-01 0.00E+00 4.08E-01 0.00E+00 4.92E-05 utilization, PERT ary fuels; NRSF = it of 1 m² of i 5.68 ft²*hr.*Fr Transport C2 3.17E-09 1.54E-05 8.99E-07 0.00E+00 0.00E+00	uilding servi Disposal C3/C4 2.82E-02 0.00E+00 2.82E-02 3.99E-01 0.00E+00 3.99E-01 0.00E+00 1.99E-01 0.00E+00 1.99E-01 0.00E+00 1.98E-22 1.09E-23 1.28E-22 0.00E+00 non-renewable nstalled Neco /BTU per inc Disposal C3/C4 1.37E-09 5.64E-01 4.10E-06 0.00E+00 0.00E+00	Denefits and Loads beyond system D 6.78E-04 0.00E+00 6.78E-04 -8.92E-03 0.00E+00 -8.92E-03 0.00E+00 -8.92E-03 0.00E+00 -2.09E-06 e primary energy PENRT = Total secondary fuels; por [®] Type h) with a Benefits and Loads beyond system boundary D -3.90E-12 -2.14E-06 -5.54E-07 0.00E+00
Parameter PERE PERM PENRE PENRR PENRR PENRT SM RSF FW Caption Caption HWD NHWD CRU MFR MER	Environmer	Interest that giv aging includ (MJ) (MJ) (MJ) (MJ) (MJ) (MJ) (MJ) (MJ)	A1 6.16E-01 0.00E+00 6.16E-01 0.00E+00 6.16E-01 0.00E+00 6.16E-01 2.72E+01 2.42E+01 5.15E+01 0.00E+00 7.83E-20 9.20E-19 5.09E-03 PERE = Renew resources: PEI non-renewable Pers from LCA ith a thicknee 5 years (pack Raw material supply 1.03E-08 1.04E-01 1.48E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00	- RESOURC e thermal re: Transport A2 3.43E-02 0.00E+00 3.43E-02 1.50E+00 0.00E+00 1.50E+00 0.00E+00 3.85E-31 6.13E-30 1.19E-04 able primary energy re - OUTPUT If ss that gives caging incluc Transport A2 4.51E-09 7.46E-05 1.54E-05 0.00E+00 0.00E+00 0.00E+00	Tesour CE USE for F sistance (RS) Manufacturing A3 1.95E+00 0.00E+00 1.82E-01 1.00E+01 0.00E+00 2.73E-12 3.21E-11 2.65E-03 rgy as energy carr wable primary energy carr wable primary energy carr an average for ded). Manufacturing A3 4.58E-09 4.03E-02 2.71E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00	ces; ADPF = Abic unctional Ur i) of 1 m ^{2s} K/V Transport A4 3.39E-02 0.00E+00 3.39E-02 1.37E+00 0.00E+00 1.37E+00 0.00E+00 9.47E-31 1.51E-29 1.65E-04 ler; PERM = Renirgy as energy cause of secondary in FW = STE CATEG thermal resist Transport A4 1.07E-08 5.16E-05 3.022-06 0.00E+00 0.00E+00 0.00E+00	tite depletion pote it of 1 m ² of i V (5.68 ft ² *hr. Construction – Installation A5 9.16E-04 0.00E+00 9.16E-04 0.00E+00 1.40E-02 0.00E+00 3.40E-25 3.99E-24 2.57E-06 ewable primary erring: ORIE S for Fi CORIE S for Fi ORIE S for Fi Construction – Installation A5 5.54E-11 1.55E-02 1.31E-07 0.00E+00 0.00E+00	ntial for fossil res nstalled Neo 'F/BTU per in Demolition C1 0.00E+00 off 1 m ²⁺ K/W (Demolition C1 0.00E+00	ources por® Type V nch) with a b Transport C2 1.01E-02 0.00E+00 1.01E-02 4.08E-01 0.00E+00 4.08E-01 0.00E+00 2.82E-31 4.49E-30 4.92E-05 base ft ² -hr.*Fr Transport C2 3.17E-09 1.54E-05 8.99E-07 0.00E+00 0.00E+00 0.00E+00	Uilding servi Disposal C3/C4 2.82E-02 0.00E+00 2.82E-02 3.99E-01 0.00E+00 3.99E-01 0.00E+00 1.99E-23 1.28E-22 4.84E-05 = Total renewable Installed Neco /BTU per inco Disposal C3/C4 1.37E-09 5.64E-01 4.10E-06 0.00E+00 0.00E+00	Denefits and Loads beyond system boundary D 6.78E-04 0.00E+00 6.78E-04 -8.92E-03 0.00E+00 -8.92E-03 0.00E+00 -8.92E-03 0.00E+00 -2.09E-06 e primary energy PENRT = Total secondary fuels; por [®] Type h) with a Benefits and Loads beyond system boundary D -3.90E-12 -2.14E-06 -5.54E-07 0.00E+00 0.00E+00
Parameter PERE PERM PERT PENRE PENRT SM RSF RSF Caption Parameter HWD NHWD RWD CRU MFR MER EEE	Environmer	ness that giv aging includ [MJ] [MJ] [MJ] [MJ] [MJ] [MJ] [MJ] [MJ]	A1 6.16E-01 0.00E+00 6.16E-01 0.00E+00 6.16E-01 2.72E+01 2.42E+01 5.15E+01 0.00E+00 7.83E-20 9.20E-19 5.09E-03 PERE = Renew resources, PEI non-renewable ers from LCA th a thicknew 5 years (pack Raw material supply 1.03E-08 1.04E-01 1.48E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	- RESOURC e thermal re- Transport A2 3.43E-02 0.00E+00 3.43E-02 1.50E+00 0.00E+00 1.50E+00 0.00E+00 3.85E-31 6.13E-30 1.19E-04 able primary energy re- POUTPUT If ss that gives aging incluc Transport A2 4.51E-09 7.46E-05 1.54E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	Tesour CE USE for F sistance (RS Manufacturing A3 1.95E+00 0.00E+00 1.82E-01 1.00E+01 0.00E+01 0.00E+01 0.00E+01 0.00E+01 2.73E-12 3.21E-11 2.65E-03 gry as energy carr wable primary energy carr wable primary energy carr an average 1 fed). Manufacturing A3 4.58E-09 4.03E-02 2.71E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	ces; ADPF = Abic unctional Ur i) of 1 m ^{2s} K/V Transport A4 3.39E-02 0.00E+00 3.39E-02 1.37E+00 0.00E+00 9.47E-31 1.51E-29 1.65E-04 ier; PERM = Renry as energy as end as energy as energy as energ	tite depletion pote it of 1 m ² of i V (5.68 ft ² hr. Construction – Installation A5 9.16E-04 0.00E+00 9.16E-04 0.00E+00 9.16E-04 0.00E+00 1.40E-02 0.00E+00 3.40E-25 3.99E-24 2.57E-06 wable primary errier, PENRM = Nchaterial; RSF = Re USe of net fresh CORIES for Fristance (RSI) of Construction – Installation A5 5.54E-11 1.55E-02 1.31E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	ntial for fossil res nstalled Neo 'F/BTU per in Demolition C1 0.00E+00	ources por [®] Type V hch) with a b Transport C2 1.01E-02 0.00E+00 1.01E-02 4.08E-01 0.00E+00 2.82E-31 4.49E-30 4.92E-05 utilization, PERT it of 1 m ² of i 5.68 ft ²⁺ hr.*Fr Transport C2 3.17E-09 1.54E-05 8.99E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	Uilding servi Disposal C3/C4 2.82E-02 0.00E+00 2.82E-02 3.99E-01 0.00E+00 3.99E-01 0.00E+00 1.99E-23 1.28E-22 4.84E-05 Total renewable Installed Necc (BTU per inc Disposal C3/C4 1.37E-09 5.64E-01 4.10E-06 0.00E+00 0.00E+00 0.00E+00 0.00E+00	Denefits and Loads beyond system boundary D 6.78E-04 0.00E+00 6.78E-04 -8.92E-03 0.00E+00 -8.92E-03 0.00E+00 -8.92E-03 0.00E+00 -2.09E-06 -2.09E-06 -2.09E-06 -2.09E-06 -2.09E-06 -2.09E-06 -2.09E-06 -2.09E-06 -2.09E-06 -3.90E-12 -3.90E-12 -2.14E-06 -5.54E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Parameter PERE PERM PENRE PENRR PENRR PENRT SM RSF FW Caption Caption HWD NHWD CRU MFR MER	Environmer	Interest that giv aging includ (MJ) (MJ) (MJ) (MJ) (MJ) (MJ) (MJ) (MJ)	A1 6.16E-01 0.00E+00 6.16E-01 0.00E+00 6.16E-01 2.72E+01 2.42E+01 2.42E+01 5.15E+01 0.00E+00 7.83E-20 9.20E-19 5.09E-03 PERE = Renewable ers from LCA rith a thicknewable 5 years (pack Raw material supply 1.04E-01 1.48E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	- RESOURC e thermal re- Transport A2 3.43E-02 0.00E+00 3.43E-02 1.50E+00 0.00E+00 3.85E-31 6.13E-30 1.19E-04 able primary energy re- primary energy re- stat gives aging include Transport A2 4.51E-09 7.46E-05 1.54E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	Tesour CE USE for F sistance (RS Manufacturing A3 1.95E+00 0.00E+00 1.82E-01 1.00E+01 0.00E+00 2.73E-12 3.21E-11 2.65E-03 rgy as energy carr wable primary energy carr wable primary energy carr an average for ded). Manufacturing A3 4.58E-09 4.03E-02 2.71E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00	ces; ADPF = Abic unctional Ur 3.39E-02 0.00E+00 9.47E+00 0.00E+00 9.47E+31 1.51E-29 1.65E-04 ier; PERM = Renargy as energy can rgy as energy can STE CATEC thermal resist Transport A4 1.07E-08 5.16E-05 3.02E-06 0.00E+00 0.00E+00 0.00E+00 0.00E+00	titic depletion pote it of 1 m ² of i V (5.68 ft ²⁻ hr. Construction – Installation 45 9.16E-04 0.00E+00 9.16E-04 1.40E-02 0.00E+00 1.40E-02 0.00E+00 3.40E-25 3.99E-24 2.57E-06 ewable primary eff wable primary eff tance (RSI) of Construction – Installation 45 5.54E-11 1.55E-02 1.31E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.48E-03 1.62E-03	Initial for fossil res Installed Neo 'F/BTU per in Demolition C1 0.00E+00	ources por [®] Type V hch) with a b Transport C2 1.01E-02 0.00E+00 1.01E-02 4.08E-01 0.00E+00 2.82E-31 4.49E-30 4.92E-05 utilization; PERT mary energy as m ary fuels; NRSF = it of 1 m ² of i 5.68 ft ² -hr.*F; Transport C2 3.17E-09 1.54E-05 8.99E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	Uilding servi Disposal C3/C4 2.82E-02 0.00E+00 2.82E-02 3.99E-01 0.00E+00 3.99E-01 0.00E+00 1.99E-01 0.00E+00 1.99E-01 0.00E+00 1.99E-23 1.28E-22 4.84E-05 = Total renewable nstalled Nec (BTU per inc Disposal C3/C4 1.37E-09 5.64E-01 4.10E-06 0.00E+00 0.00E+00 0.00E+00 5.09E-03 4.51E-03	Denefits and Loads beyond system boundary D 6.78E-04 0.00E+00 6.78E-04 -8.92E-03 0.00E+00 -8.92E-03 0.00E+00 -2.09E+00 -2.09E+06 e primary energy PENRT = Total secondary fuels; por® Type h) with a Benefits and Loads beyond system boundary D -3.90E-12 -2.14E-06 -5.54E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00

LCA Results for Type II insulation board:

	hat gives an a			ACT for a fund ce (RSI) of 1 r			•			
TRACI 2.1		Raw material supply	Transport	Manufacturing	Transport	Construction – Installation	Demolition	Transport	Disposal	Benefits and Loads beyond system boundary
Parameter	Unit	A1	A2	A3	A4	A5	C1	C2	C3/C4	D
GWP	[kg CO ₂ -eq.]	1.85E+00	1.43E-01	7.91E-01	1.22E-01	1.01E-02	0.00E+00	3.62E-02	3.14E-02	-7.05E-04
AP	[kg SO2-eq.]	4.17E-03	2.77E-03	1.85E-03	6.47E-04	5.96E-05	0.00E+00	1.93E-04	4.96E-04	-1.59E-06
EP	[kg N-eq.]	2.61E-04	1.04E-04	1.30E-04	5.12E-05	2.16E-05	0.00E+00	1.52E-05	1.90E-04	-8.18E-08
ODP	[kg CFC11-eq.]	2.06E-10	2.13E-14	6.15E-10	4.17E-15	1.84E-16	0.00E+00	1.24E-15	5.78E-15	-4.07E-14
POCP	[kg O ₃ -eq.]	6.62E-02	5.43E-02	7.60E-02	2.16E-02	6.52E-03	0.00E+00	6.42E-03	4.15E-03	-1.92E-05
	[MJ, LHV]	8.94E+00	2.42E-01	1.44E+00	2.30E-01	2.21E-03	0.00E+00	6.86E-02	6.28E-02	-9.02E-04
Caption				; ODP = Ozone de ne photochemical						
	hat gives an a			ACT for a fund ce (RSI) of 1 n			•	••		
CML 2001 (2016)		Raw material supply	Transport	Manufacturing	Transport	Construction – Installation	Demoliton	Transport	Disposal	Benefits and Loads beyond system boundary
Parameter	Unit	A1	A2	A3	A4	A5	C1	C2	C3/C4	D
GWP	[kg CO ₂ -eq.]	1.87E+00	1.43E-01	7.95E-01	1.22E-01	1.09E-02	0.00E+00	3.62E-02	3.16E-02	-7.10E-04
ODP	[kg CFC11-eq.]	1.67E-10	2.13E-14	4.99E-10	4.17E-15	1.84E-16	0.00E+00	1.24E-15	5.78E-15	-3.83E-14
AP	[kg SO2-eq.]	4.11E-03	2.58E-03	1.77E-03	4.80E-04	2.37E-05	0.00E+00	1.43E-04	4.31E-04	-1.61E-06
EP	[kg PO4 ³⁻ -eq.]	4.23E-04	2.91E-04	2.27E-04	1.28E-04	2.62E-05	0.00E+00	3.82E-05	1.93E-04	-1.26E-07
POCP	[kg ethene-eq.]	9.39E-04	1.48E-04	1.43E-02	4.72E-05	1.92E-03	0.00E+00	1.41E-05	1.98E-04	-1.07E-07
ADPE	[kg Sb-eq.]	4.52E-07	1.35E-08	2.74E-07	2.22E-08	4.46E-10	0.00E+00	6.62E-09	1.36E-08	-2.00E-10
ADPF	[MJ]	6.41E+01	1.82E+00	1.17E+01	1.72E+00	1.71E-02	0.00E+00	5.10E-01	4.89E-01	-9.43E-03
Caption				ential; ODP = Depl P = Formation pote	ntial of troposph		nemical oxidants;	ADPE = Abiotic d		

Environmental Parameters from LCA – RESOURCE USE for Functional Unit of 1 m² of installed Neopor[®] Type II insulation material with a thickness that gives an average thermal resistance (RSI) of 1 m²*K/W (5.68 ft²*hr.*F/BTU per inch) with a building service life of 75 years (packaging included).

years (paci	kaging includ	iea).								
		Raw material supply	Transport	Manufacturing	Transport	Construction – Installation	Demolition	Transport	Disposal	Benefits and Loads beyond system boundary
Parameter	Unit	A1	A2	A3	A4	A5	C1	C2	C3/C4	D
PERE	[MJ]	7.74E-01	4.31E-02	2.45E+00	4.27E-02	1.15E-03	0.00E+00	1.27E-02	3.54E-02	8.53E-04
PERM	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	[MJ]	7.74E-01	4.31E-02	2.45E+00	4.27E-02	1.15E-03	0.00E+00	1.27E-02	3.54E-02	8.53E-04
PENRE	[MJ]	3.43E+01	1.88E+00	1.24E+01	1.72E+00	1.75E-02	0.00E+00	5.14E-01	5.02E-01	-1.12E-02
PENRM	[MJ]	3.05E+01	0.00E+00	2.04E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	[MJ]	6.47E+01	1.88E+00	1.26E+01	1.72E+00	1.75E-02	0.00E+00	5.14E-01	5.02E-01	-1.12E-02
SM	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	[MJ]	9.85E-20	4.85E-31	3.43E-12	1.19E-30	4.28E-25	0.00E+00	3.54E-31	1.37E-23	0.00E+00
NRSF	[MJ]	1.16E-18	7.71E-30	4.04E-11	1.90E-29	5.02E-24	0.00E+00	5.65E-30	1.61E-22	0.00E+00
FW	[m³]	6.41E-03	1.50E-04	3.33E-03	2.08E-04	3.24E-06	0.00E+00	6.18E-05	6.09E-05	-2.62E-06
Caption		PERE = Renewable primary energy as energy carrier, PERM = Renewable primary energy as material utilization; PERT = Total renewable primary energy resources; PENRE = Non-renewable primary energy as energy carrier, PENRM = Non-renewable primary energy as material utilization; PENRT = Total non-renewable primary energy as material utilization; PENRT = Non-renewable primary energy as material utilization; PENRT = Non-renewable primary energy as material utilization; PENRT = Total non-renewable primary energy as material utilization; PENRT = Non-renewable secondary fuels; NRSF = Non-renewable primary energy as material; NRSF = Non-renewable secondary fuels; NRSF = Non-renewable secondary fuels; NRSF = Non-renewable primary energy as material; NRSF = Non-renewable secondary fuels; NRSF = Non-renewable secondary fuels; NRSF = Non-renewable primary energy as material; NRSF = Non-renewable primary e								

insulation m	Environmental Parameters from LCA – OUTPUT FLOWS & WASTE CATEGORIES for Functional Unit of 1 m ² of installed Neopor [®] Type insulation material with a thickness that gives an average thermal resistance (RSI) of 1 m ² *K/W (5.68 ft ² *hr.*F/BTU per inch) with a building service life of 75 years (packaging included).												
		Raw material supply	Transport	Manufacturing	Transport	Construction – Installation	Demolition	Transport	Disposal	Benefits and Loads beyond system boundary			
Parameter	Unit	A1	A2	A3	A4	A5	C1	C2	C3/C4	D			
HWD	[kg]	1.30E-08	5.67E-09	5.76E-09	1.34E-08	6.97E-11	0.00E+00	3.99E-09	1.72E-09	-4.91E-12			
NHWD	[kg]	1.31E-01	9.39E-05	5.07E-02	6.49E-05	1.95E-02	0.00E+00	1.93E-05	7.10E-01	-2.69E-06			
RWD	[kg]	1.87E-04	1.93E-05	3.41E-04	3.80E-06	1.64E-07	0.00E+00	1.13E-06	5.15E-06	-6.97E-07			
CRU	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
MFR	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
MER	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
EEE	[MJ]	0.00E+00	0.00E+00	1.16E-03	0.00E+00	1.86E-03	0.00E+00	0.00E+00	6.40E-03	0.00E+00			
EET	[MJ]	0.00E+00	0.00E+00	6.97E-04	0.00E+00	2.04E-03	0.00E+00	0.00E+00	5.68E-03	0.00E+00			
Caption				ed; NHWD = Non- ling; MER = Mater									

LCA results for Type IX insulation board:

RESULTS OF THE LCA - ENVIRONMENTAL IMPACT for a functional unit of 1 m ² of installed Neopor® Type IX insulation material with a thickness that gives an average thermal resistance (RSI) of 1 m ² *K/W (5.68 ft ² *hr.*F/BTU per inch) with a building service life of 75 years (packaging included).											
TRACI 2.1		Raw material supply	Transport	Manufacturing	Transport	Construction – Installation	Demolition	Transport	Disposal	Benefits and Loads beyond system boundary	
Parameter	Unit	A1	A2	A3	A4	A5	C1	C2	C3/C4	D	
GWP	[kg CO ₂ -eq.]	2.30E+00	1.77E-01	9.82E-01	1.51E-01	1.25E-02	0.00E+00	4.50E-02	3.90E-02	-8.76E-04	
AP	[kg SO2-eq.]	5.18E-03	3.44E-03	2.30E-03	8.04E-04	7.40E-05	0.00E+00	2.40E-04	6.16E-04	-1.98E-06	
EP	[kg N-eq.]	3.24E-04	1.29E-04	1.61E-04	6.36E-05	2.68E-05	0.00E+00	1.89E-05	2.36E-04	-1.02E-07	
ODP	[kg CFC11-eq.]	2.56E-10	2.64E-14	7.64E-10	5.18E-15	2.28E-16	0.00E+00	1.54E-15	7.18E-15	-5.06E-14	
POCP	[kg O ₃ -eq.]	8.22E-02	6.74E-02	9.44E-02	2.68E-02	8.10E-03	0.00E+00	7.98E-03	5.16E-03	-2.38E-05	
	[MJ, LHV]	1.11E+01	3.00E-01	1.79E+00	2.86E-01	2.74E-03	0.00E+00	8.52E-02	7.80E-02	-1.12E-03	
Caption						AP = Acidification sell, Abiotic Depletio					

	OF THE LCA hat gives an a included).						•	••		
CML 2001 (2016)		Raw material supply	Transport	Manufacturing	Transport	Construction – Installation	Demoliton	Transport	Disposal	Benefits and Loads beyond system boundary
Parameter	Unit	A1	A2	A3	A4	A5	C1	C2	C3/C4	D
GWP	[kg CO ₂ -eq.]	2.32E+00	1.78E-01	9.88E-01	1.51E-01	1.35E-02	0.00E+00	4.50E-02	3.92E-02	-8.82E-04
ODP	[kg CFC11-eq.]	2.08E-10	2.64E-14	6.20E-10	5.18E-15	2.28E-16	0.00E+00	1.54E-15	7.18E-15	-4.76E-14
AP	[kg SO2-eq.]	5.10E-03	3.20E-03	2.20E-03	5.96E-04	2.94E-05	0.00E+00	1.77E-04	5.36E-04	-2.00E-06
EP	[kg PO43eq.]	5.26E-04	3.62E-04	2.82E-04	1.59E-04	3.26E-05	0.00E+00	4.74E-05	2.40E-04	-1.56E-07
POCP	[kg ethene-eq.]	1.17E-03	1.83E-04	1.78E-02	5.86E-05	2.38E-03	0.00E+00	1.75E-05	2.46E-04	-1.32E-07
ADPE	[kg Sb-eq.]	5.62E-07	1.68E-08	3.40E-07	2.76E-08	5.54E-10	0.00E+00	8.22E-09	1.69E-08	-2.48E-10
ADPF	[MJ]	7.96E+01	2.26E+00	1.45E+01	2.14E+00	2.12E-02	0.00E+00	6.34E-01	6.08E-01	-1.17E-02
Caption				ential; ODP = Dep = Formation pote resour	ential of troposph		hemical oxidants;	ADPE = Abiotic of		

	a thickness	nvironmental Parameters from LCA – RESOURCE USE for Functional Unit of 1 m ² of installed Neopor [®] Type IX insulation material with thickness that gives an average thermal resistance (RSI) of 1 m ² *K/W (5.68 ft ² *hr.*F/BTU per inch) with a building service life of 75 ares (packaging included).											
			Raw material supply	Transport	Manufacturing	Transport	Construction – Installation	Demolition	Transport	Disposal	Benefits and Loads beyond system boundary		
Parameter		Unit	A1	A2	A3	A4	A5	C1	C2	C3/C4	D		
PERE		[MJ]	9.62E-01	5.36E-02	3.04E+00	5.30E-02	1.43E-03	0.00E+00	1.58E-02	4.40E-02	1.06E-03		
PERM		[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
PERT		[MJ]	9.62E-01	5.36E-02	3.04E+00	5.30E-02	1.43E-03	0.00E+00	1.58E-02	4.40E-02	1.06E-03		
PENRE		[MJ]	4.26E+01	2.34E+00	1.54E+01	2.14E+00	2.18E-02	0.00E+00	6.38E-01	6.24E-01	-1.39E-02		
PENRM		[MJ]	3.78E+01	0.00E+00	2.54E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
PENRT		[MJ]	8.04E+01	2.34E+00	1.57E+01	2.14E+00	2.18E-02	0.00E+00	6.38E-01	6.24E-01	-1.39E-02		
SM		[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
RSF		[MJ]	1.22E-19	6.02E-31	4.26E-12	1.48E-30	5.32E-25	0.00E+00	4.40E-31	1.70E-23	0.00E+00		
NRSF		[MJ]	1.44E-18	9.58E-30	5.02E-11	2.36E-29	6.24E-24	0.00E+00	7.02E-30	2.00E-22	0.00E+00		
FW		[m²]	7.96E-03	1.87E-04	4.14E-03	2.58E-04	4.02E-06	0.00E+00	7.68E-05	7.56E-05	-3.26E-06		
Caption		[m*] 7.96E-03 1.87E-04 4.14E-03 2.58E-04 4.02E-05 0.00E+00 7.56E-05 7.50E-05 -3.20E-05 PERE Renewable primary energy as energy carrier; PERIA Renewable primary energy as material utilization; PERT Total renewable primary energy resources; PENRE = Non-renewable primary energy as energy carrier; PENRM = Non-renewable primary energy as material utilization; PERT Total renewable primary energy as energy carrier; PENRM = Non-renewable primary energy as material utilization; PERT Total renewable primary energy resources; SM = Use of secondary fuels; NRSF = Non-renewable secondary fuels; NRSF = Non-renewable secondary fuels; NRSF = Non-renewable secondary fuels;											

IX insulat	Environmental Parameters from LCA – OUTPUT FLOWS & WASTE CATEGORIES for Functional Unit of 1 m ² of installed Neopor [®] Type IX insulation material with a thickness that gives an average thermal resistance (RSI) of 1 m ² *K/W (5.68 ft ² *hr.*F/BTU per inch) with a building service life of 75 years (packaging included).													
		Raw material supply	Transport	Manufacturing	Transport	Construction – Installation	Demolition	Transport	Disposal	Benefits and Loads beyond system boundary				
Parameter	Unit	A1	A2	A3	A4	A5	C1	C2	C3/C4	D				
HWD	[kg]	1.61E-08	7.04E-09	7.16E-09	1.67E-08	8.66E-11	0.00E+00	4.96E-09	2.14E-09	-6.10E-12				
NHWD	[kg]	1.63E-01	1.17E-04	6.30E-02	8.06E-05	2.42E-02	0.00E+00	2.40E-05	8.82E-01	-3.34E-06				
RWD	[kg]	2.32E-04	2.40E-05	4.24E-04	4.72E-06	2.04E-07	0.00E+00	1.40E-06	6.40E-06	-8.66E-07				
CRU	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
MFR	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
MER	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
EEE	[MJ]	0.00E+00	0.00E+00	1.44E-03	0.00E+00	2.31E-03	0.00E+00	0.00E+00	7.95E-03	0.00E+00				
EET	[MJ]	0.00E+00	0.00E+00	8.66E-04	0.00E+00	2.54E-03	0.00E+00	0.00E+00	7.05E-03	0.00E+00				
Caption				ed; NHWD = Non- ling; MER = Mater										

6.0 LCA: Interpretation

All environmental impact categories are significantly influenced by the provision of raw materials and the production process. The polystyrene used in the production process already contains a large part of the environmental burden. For the impact categories GWP, EP, AP, ADP (element & fossil) and POCP the granule production and transport is responsible for about 55% to 85% of the impact. Manufacturing of the insulation board (A3) also contributes significantly to GWP due to the energy requirements during production and POCP due to the pentane emissions during the product foaming and aging processes. The ozone depletion potential (ODP) is largely caused by the production of polystyrene granules and the production of the insulation board (> 95% of the impact). Transport of the Neopor® F5300 Plus GPS resin from BASF's Ludwigshafen, Germany plant to

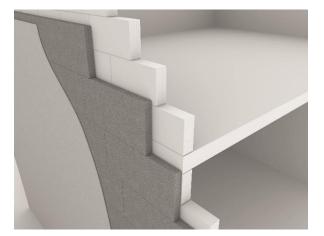
6.1 VOC emissions

Like it is the case for all EPS products insulation boards, Neopor® Plus Graphite Polystyrene (GPS) can be used for indoor applications, however they typically are not directly exposed to the indoor air but covered by some kind of covering layer such as gypsum board.

To make it easier for architects and developers to find low-emission materials, the Greenguard label indicates products that meet the strict emissions limits for Volatile Organic Compounds (VOCs). There are limits for over 360 VOCs. All insulation boards with Neopor® PLUS GPS meet not only the demanding criteria of the Greenguard certificate, but also the requirements of the Californian Department of Public Health Services. As a result, the raw material has been given the Greenguard Gold label, which means it may also be used in schools and health facilities accommodating children or elderly people, in addition to commercial buildings.

Manufacturers producing Neopor® Plus GPS insulation boards can also benefit from the certification of the raw material; by applying for an extended license from UL (Underwriter Laboratories), they can have their product labeled as protective of health for indoor spaces.

6.2 Leaching performance


Leaching behavior is not relevant for Neopor® Plus GPS insulation board.

Atlas EPS's North American manufacturing locations contributes appreciably to the impact categories of AP, EP, GWP and POCP.

The effort (input of additional energy and material) for the end-of-life scenario (C3/C4) and the resulting credits in form of electricity and steam due to the capture and utilization of landfill gas are considered separately. Any benefits result in negative values in module D. Though no appreciable benefits are realized in this assessment.

Transports other than A2, (A4 and C2) have a minor influence on all impact categories compared to the contributions from the other areas.

7.0 References

AgBB

Anforderungen an die Innenraumluftqualität in Gebäuden: Gesundheitliche Bewertung der Emissionen von flüchtigen organischen Verbindungen (VVOC, VOC und SVOC) aus Bauprodukten Status May 2010

ASTM E84 - 18a

Standard Test Method for Surface Burning Characteristics of Building Materials.

EN 13501-1

EN 13501-1:2010-01: Fire classification of construction products and building elements – Part 1: Classification using data from reaction to fire tests

EN 15804

EN 15804:2012-04+A1 2013: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

Eurofins

Eurofins Produkt Testing A/S, Smedeskovvej 38, 8464 Galten, Denmark; Prüfbericht 392-2016-004 18900

GaBi ts 8.5

Software and databases of GaBi ts 8.5, LBP, University of Stuttgart and thinkstep AG

Greenguard

UL 2818 - 2013 Standard for Chemical Emissions for Building Materials, Finishes and Furnishings

Greenguard Gold

UL 2818 - 2013 Gold Standard for Chemical Emissions for Building Materials, Finishes and Furnishings

ISO 14025

DIN EN ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

ISO 14040 - 14044

ISO 14040:2006, Environmental management – LCA – Principles and framework

ISO 21930

ISO 21930:2017 Sustainability in buildings and civil engineering works – Core rules for environmental product declarations of construction products and services.

NFPA 285

Standard Fire Test Method for Evaluation of Fire Propagation Characteristics of Exterior Non-Load-Bearing Wall Assemblies Containing Combustible Components

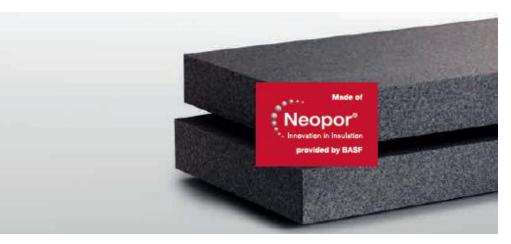
NFPA 286

Standard Methods of Fire Tests for Evaluating Contribution of Wall and Ceiling Interior Finish to Room Fire Growth

Neopor[®] Picture Front Page and Page 3 BASF Wohnen + Bauen GmbH

Neopor[®] Plus GPS Manufacturing process schematic (page 4)

Adapted form EPS IA EPS Insulation EPD Declaration No. 4787238561.101.1 8/10/2017


PCR Guidance-Texts for Building-Related Products and Services Part B

UL 10010-1 2.0 (issued 04/10/2018) Product Category Rules for Building-Related Products and Services. Part B: Building Envelope Thermal Insulation EPD Requirements

Product Category Rules for Building-Related Products and Services Part A

UL 10010 version 3.1 (issued 05/02/2018) Product Category Rules for Building-Related Products and Services. Part A: Life Cycle Assessment Calculation Rules and Report Requirements

Neopor® GPS Insulation and Construction Photos BASF Corporation BASF SE

