HAY

About A Chair Europe

Environmental Product Declaration

Date of Issue:May 20, 2025Date of Expiration:May 20, 2030

Product Category Rules

BIFMA PCR for Seating, UNCPC 3811, version 3 Product Sub-Category: Side Seat Chair (Single Occupant) EN 15804+A2 ISO 14025/14040/14044

Functional Unit

1 seat for 1 individual maintained for a 10-year period (2 About A Chairs)

This EPD was not written to support comparative assertions. EPDs based on different PCRs or different calculation models may not be comparable. When attempting to compare EPDs or life cycle impacts of products from different companies, the user should be aware of the uncertainty in the final results due to and not limited to the practitioner's assumptions, the source of the data used in the study, the specifics of the product modeled, and the software tool used to conduct the study.

Program Operator	NSF Certification LLC 789 N. Dixboro, Ann Arbor, MI 48105 www.nsf.org		
Manufacturer Name and Address	HAY ApS Havnen 3, 8700 Horsens, Denmark		
Declaration Number	EPD11084		
Declared Product and Functional Unit	About A Chair 23 (AA216-A001-AA01 with Remix Fabric) Functional Unit: 1 seat for 1 individual maintained for 10 years		
Reference PCR and Version Number	BIFMA PCR for Seating, UNCPC 3811, version 3 EN 15804+A2		
Product's intended Application and Use	Side Seat Chair (Single Occupant)		
Product RSL	5 years		
Markets of Applicability	Europe		
Date of Issue	May 20, 2025		
Period of Validity	5 years from date of issue		
EPD Type	Product Specific		
Intended Audience	Business-to-Business, Business-to-Consumer		
Range of Dataset Variability	N/A		
EPD Scope	Cradle to Grave		
Year of reported manufacturer primary data	2022		
LCA Software and Version Number	Sphera LCA for Experts (fka GaBi) 10.9		
LCI Database and Version Number	Sphera Managed LCA Content (fka GaBi) Database, 2023.1		
LCIA Methodology and Version Number	TRACI 2.1, IPCC AR6, EN 15804 EF 3.1		
The PCR review was conducted by:	Review Panel Chaired by Dr. Thomas Gloria		
This declaration was independently verified in accordance with ISO 14025: 2006, the BIFMA PCR for Seating, and EN 15804+A2 □ Internal	Jack Geibig - EcoForm jgeibig@ecoform.com		
This reference life cycle assessment was conducted in accordance with ISO 14044 and the reference PCRs:	WAP Sustainability Consulting		
This life cycle assessment was independently verified in accordance with ISO 14044 and the reference PCR by:	Jack Geibig - EcoForm jgeibig@ecoform.com		
References	BIFMA PCR for Seating: UNCPC 3811, version 3 (2014) EN 15804+A2 (2019) ISO 14025/40/44 (2006) HAY Background Report for Seating LCA v1.0		

Environmental declarations from different programs (ISO 14025) may not be comparable. Comparison of the environmental performance of Products using EPD information shall be based on the product's use and impacts at the building level, and therefore EPDs may not be used for comparability purposes when not considering the building energy use phase as instructed under this PCR. Full conformance with the PCR for Products allows EPD comparability only when all stages of a life cycle have been considered. However, variations and deviations are possible". Example of variations: Different LCA software and background LCI datasets may lead to differences results for upstream or downstream of the life cycle stages declared.

Product Description

The About A Chair AAC 23 offers functional simplicity and modern aesthetics, which are tempered by the softness and warmth of the upholstered shell. Retaining the same curved shell with unified silhouette that characterizes the entire series, this design features a four-legged wooden base that adds a timeless, classic expression. The wooden base is available in a choice of finishes, with the shell offered in a variety of regular and quilted upholstery options. The multitude of variants and design combinations give this series a versatile expression that makes it suitable for a wide variety of corporate, private, and public contexts.

This document relates to About A Chair 23. About A Chair 23 side chair with 4-leg, molded wood base, armrest, shell with foam, full upholstery with wool and nylon blend fabric, and felt glides.

Company Description

MillerKnoll is a collective of dynamic brands that comes together to design the world we live in. The MillerKnoll brand portfolio includes Herman Miller, Knoll, Colebrook Bosson Saunders, DatesWeiser, Design Within Reach, Edelman, Geiger, HAY, HOLLY HUNT, Knoll Textiles, Maharam, Muuto, NaughtOne, and Spinneybeck|FilzFelt. MillerKnoll is an unparalleled platform that redefines modern for the 21st century by building a more sustainable, equitable, and beautiful future for all.

HAY is where everyday designs are reimagined. Wherever we look, we discover design – and every piece we create is an answer to a question. Collaboration is at the heart of HAY. Drawing inspiration from art, architecture, and fashion, we work with the best international designers to experiment with new materials, new technologies, and new ideas. Our goal is to create affordable, long-lasting products that are highly considered, quietly forward-thinking, and relevant to real life.

Our Mission

Driven by the mission to design and make the world's best products in the most sustainable way, MillerKnoll's sustainability strategy focuses on three key areas:

Carbon

Design the lowest carbon footprint products and commit to achieving net-zero carbon emissions by 2050.¹¹

Materials

Use sustainable, 100% bio-based or recycled materials by 2050.

Circularity

Design timeless, durable products with zero waste by 2050.

Supplier Support

At MillerKnoll, we are committed to working closely with our suppliers to reduce our collective impact on the environment. We encourage our suppliers to minimize their operations' environmental impacts and require they assist us in decreasing our facilities' environmental effects.

Manufacturing Locations

Poland

Warranty

Backed by MillerKnoll's 12-year warranty.

Creating Transparency on Materials

We are transparent about our materials because we believe in informed decisions. Our Ecomedes platform provides environmental product information from across our brands, including details about materials used and third-party certifications. This resource helps customers buy or specify environmentally preferable products by supplying product-level data and automating product performance calculations that can help contribute to sustainability goals. Ecomedes is linked here.

Product Environmental Data

	Value	
Recycled Content %	61%	
Post-Consumer	61%	
Pre-Consumer	0%	

Additional information, including installation and recycling instructions, can be found at

https://www.hermanmiller.com/products/seating/side-

chairs/about-a-chair/ and

https://hay.dk/hay/furniture/seating/chair/about-a-chair/aac-23.

¹ MillerKnoll's net-zero commitment is subject to factors that are partly outside its control, including its value chain's ability to reduce their Scope 1 and 2 emissions (and therefore MillerKnoll's Scope 3 emissions) by 2050. In light of this, MillerKnoll is committed to achieving net-zero by 2050 and will continue to engage with stakeholders across its value chain to support them in their efforts to become net-zero by 2050.

MATERIAL DECLARATION

Functional Unit

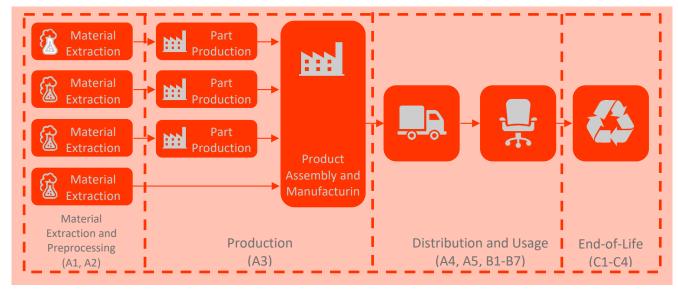
The functional unit is one seat for one individual, maintained over a 10-year period, including packaging materials used for the final assembled product. The assumed RSL is 5 years, so one replacement is required over the 10-year period. To meet the functional unit, 2 units of About A Chair 23 are required.

Reference Flow and Product Specifications

One About A Chair 23 (product number AA216-A001-AA01) was modeled for this EPD. This chair is determined to be a representative product based on sales of the variations. The results in this EPD are only representative of this configuration. While the exact configuration purchased may be slightly different, it is expected to have impacts within 10% of this representative configuration. The results presented on the subsequent pages and the product composition tables on the right consist of the impacts of About A Chair 23 made in Poland.

System Boundary

Cradle-to-Grave


Content Declaration

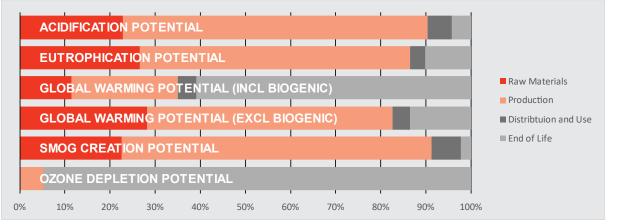
The table to the right details the materials included in a specific SKU for the product made in Europe, summarized in the chart below. In order to achieve the functional unit, 2 products are required.

Polypropylene 61%
Plywood 28%
Wool and Polyamide Blend Fabric 4%
PU Foam 4%
Adhesive 2%
Other 1%

Material	Mass (kg)	Mass (%)	Resource
Polypropylene	4.70	61%	Recycled Content
Plywood	2.20	28%	Virgin Renewable
Wool and Polyamide Blend Fabric	0.33	4%	Virgin Renewable and Non-Renewable
PU Foam	0.30	4%	Virgin Non-renewable
Adhesive	0.14	2%	Virgin Non-renewable
Polyester Fabric	0.05	1%	Virgin Non-renewable
Steel	0.04	<1%	Virgin Non-renewable
PVC	0.01	<1%	Virgin Non-renewable
Tota	l 7.76	100%	

Packaging	Mass (k	g) Mass (%	6) F	Resource
Wood	3	00 5	6% \	/irgin Renewable
Corrugate	2	25 4	2% \	/irgin Renewable
PE Film	0	09	2% \	/irgin Non-renewable
PS Foam	0	01 <	1% \	/irgin Non-renewable
	Total 5	35 10	0%	

Overview of Life Cycle Stages


Life Cycle Impact Assessment – BIFMA PCR for Production in Europe

Environmental Impacts were calculated using the GaBi software platform. Impact results according to the BIFMA PCR have been calculated using IPCC AR6 GWP₁₀₀ and TRACI 2.1 characterization factors. Additionally, LCI indicators have been calculated for primary energy, water usage, renewable and non-renewable resources used as energy carriers and materials, and recovered energy. Results presented in this report are for 1 seat for 1 individual maintained for 10 years. To fulfill this functional unit, 2 units of About A Chair 23 are required.

The results presented here are for About A Chair 23 (product number AA216-A001-AA01 with Remix Fabric). Additionally, the results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins, or risks.

LCA Impact Category	Unit	Total	Raw Material Production	Product Production	Distribution and Retail	End of Life
Acidification Potential	$kg \ SO_2 \ eq$	2.09E-01	4.78E-02	1.41E-01	1.13E-02	8.89E-03
Eutrophication Potential	kg N eq	2.64E-02	7.00E-03	1.58E-02	9.23E-04	2.66E-03
Global Warming Potential Including Biogenic Carbon	kg CO ₂ eq	5.33E+01	6.12E+00	1.25E+01	2.20E+00	3.24E+01
Global Warming Potential Excluding Biogenic Carbon	$kg CO_2 eq$	5.69E+01	1.61E+01	3.10E+01	2.20E+00	7.68E+00
Photochemical Ozone Creation Potential (Smog)	kg O₃ eq	3.94E+00	8.89E-01	2.71E+00	2.55E-01	8.81E-02
Ozone Depletion Potential	kg CFC-11 eq	3.64E-09	2.21E-12	1.91E-10	5.64E-15	3.44E-09
LCI Impact Category	Unit	Total	Raw Material Production	Product Production	Distribution and Retail	End of Life
Primary Energy Demand Renewable and Non- Renewable)	MJ (net cal value)	1.04E+03	3.93E+02	6.11E+02	3.20E+01	9.38E+00
Freshwater Consumption	kg	3.44E+02	1.31E+02	2.01E+02	4.13E+00	8.41E+00
Renewable Primary Resources Used as Energy Carrier	MJ (net cal value)	4.61E+02	2.05E+02	2.54E+02	1.21E+00	7.58E-01
Renewable Primary Resources Used as Materials	MJ (net cal value)	6.30E+01	0.00E+00	6.30E+01	0.00E+00	0.00E+00
Non-renewable Primary Resources Used as Energy Carrier	MJ (net cal value)	5.84E+02	1.88E+02	3.57E+02	3.08E+01	8.62E+00
Non-renewable Primary Resources Used as Materials	MJ (net cal value)	1.36E+02	1.05E+02	3.08E+01	0.00E+00	0.00E+00
Recovered Energy	MJ (net cal value)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Life Cycle Impacts of About a Chair

APPENDIX: EN 15804+A2

Additionally, results have been calculated using LCIA methodologies for core environmental impact categories specified in EN 15804+A2, as well as LCI indicators required by EN15804+A2 reference package EF 3.1. The results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins, or risks. Values in the scenario tables below are reported per functional unit, which is 1 seat for 1 individual maintained for 10 years. To fulfill this functional unit, 2 units of product are required.

LCA Scenario Details

Functional Unit				
Parameter	Value per Functional Unit			
Declared Unit	1 seat			
Reference Service Life Required	10 years			
Biogenic Carbon in Product	2.37 kg C			
Biogenic Carbon in Packaging	5.33 kg C			

Reference Service Life			
Parameter	Value per functional unit		
Reference Service Life	5 Years		
Design Application Parameters	Use as indicated in product brochure and warranty		
Declared Product Properties	Properties given in product description on page 4		
Indoor environment	Typical office and home environment		
Use conditions	Typical office and home use		

A4: Transport to the Building Site			
Parameter	Value per functional unit		
Transportation Type	Diesel Truck	Heavy Fuel Oil Ship	
Fuel Consumption*	0.420 L/km	13.0 L/km	
Distance	1,020 km	540 km	
Capacity Utilization	67% 53%		
Capacity utilization volume factor	pacity utilization volume factor 1		
Weight of product (kg)	7.76		
Volume (m ³)	0.242		
*Fuel efficiency value shown is for a full payload			

A5.	Installation	in	the	Building
- AJ.	matanation			Duiluilig

Parameter	Value per functional unit
Packaging Waste Produced	5.35 kg
Installation Assumptions	No product waste, Installed with hand tools.

B1: Use		
Parameter	Value per functional unit	
There are no emissions related to the expected use of this product.		

B2: Maintenance			
Parameter	Value per functional unit		
Maintenance Process	No maintenance is expected for this product		
Maintenance cycle	0		
Ancillary Materials for maintenance (kg/cycle)	0		
Waste materials resulting from maintenance (kg)	0		
Net fresh water consumption during maintenance (m3)	0		
Energy input during maintenance (kWh)	0		

B3: Re	epair
Parameter	Value per functional unit
Repair process	No repairs are expected for this product
Inspection process	No repairs are expected for this product
Repair cycle (#/RSL)	0
Ancillary materials (kg)	0
Waste materials from repair (kg)	0
Net freshwater consumption during repair (m3)	0
Energy input during repair (kWh)	0

B4: Replac	cements
Parameter	Value per functional unit
Replacement cycle (#/RSL)	1
Energy input during replacement (kWh)	0
Exchange of worn parts during the products life cycle (kg)	0

B5: Refurb	ishment
Parameter	Value per functional unit
Refurbishment process	No refurbishment is expected for this product
Refurbishment cycle (#/RSL)	0
Energy input during refurbishment (kWh)	0
Material input for refurbishment (kg)	0
Waste material resulting from refurbishment (kg)	0

B6 and B7: Use of energy and Use of Water

Parameter	Value per functional unit
Ancillary materials (kg)	0
Net freshwater consumption (m ³)	0
Power output of equipment (kW)	0
Characteristic performance	n/a

C1-C4: En	d-of-Life
Parameter	Value per functional unit
Weight of Product Collected (kg)	7.76
Weight to Recycling (kg)	5.52
Weight to Energy Recovery (kg)	0.45
Weight to Landfill (kg)	1.79
Distance to Recycling (km)	32
Distance to Energy Recovery (km)	32
Distance to Landfill (km)	32

D: Benefits and Loads Beyond the System Boundary

 Parameter
 Value per functional unit

 Includes all flows leaving the system not allocated as co-products and have passed the end-of-waste state. Includes loads from processing recycled materials. Credits are calculated based on the amount of useable material and energy sent to the next product system. Credits not applied to the portion of flows derived from secondary sources.

MillerKnoll

Life Cycle Stages

The results are provided according to the following life cycle modules:

Module	Description
A1	Product Stage: Raw Material Supply
A2	Product Stage: Transport
A3	Product Stage: Manufacturing
A4	Construction Process Stage: Transport
A5	Construction Process Stage: Installation
B1	Use Stage: Use
B2	Use Stage: Maintenance
B3	Use Stage: Repair
B4	Use Stage: Replacement
B5	Use Stage: Refurbishment
B6	Operational Energy Use
B7	Operational Water Use
C1	EOL: Deconstruction
C2	EOL: Transport
C3	EOL: Waste Processing
C4	EOL: Disposal
D	Benefits beyond system

Life Cycle Impact Assessment - EN 15804+A2 (EF 3.1) for Production in Europe

EN 15804+A2 Results – 1 seat for 1 individual maintained for 10 Years

Impact Category	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
GWP _{Total} [kg CO ₂ eq]	9.32E+00	1.10E+00	1.17E+01	0.00E+00	0.00E+00	0.00E+00	2.84E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.00E-02	3.25E+00	3.07E+00	-6.29E+00
GWP _{Fossil} [kg CO ₂ eq]	2.30E+01	1.10E+00	1.27E-01	0.00E+00	0.00E+00	0.00E+00	2.49E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.00E-02	5.58E-01	1.28E-01	-6.28E+00
GWP _{Biogenic} [kg CO ₂ eq]	-1.37E+01	1.06E-03	1.15E+01	0.00E+00	0.00E+00	0.00E+00	3.46E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.98E-05	2.70E+00	2.94E+00	0.00E+00
GWP _{LULUC} [kg CO ₂ eq]	1.28E-02	1.22E-03	8.95E-05	0.00E+00	0.00E+00	0.00E+00	1.43E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.27E-05	9.05E-06	1.03E-04	-1.21E-02
ODP [kg CFC 11 eq]	1.44E-10	1.34E-13	6.99E-10	0.00E+00	0.00E+00	0.00E+00	1.36E-09	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.45E-15	5.13E-10	2.11E-13	-3.01E-11
AP [Mole H+ eq]	1.04E-01	6.13E-03	8.88E-04	0.00E+00	0.00E+00	0.00E+00	1.12E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.01E-05	2.89E-04	5.90E-04	-2.46E-02
EP, freshwater [kg PO ₄ eq]	4.86E-04	5.27E-06	4.35E-06	0.00E+00	0.00E+00	0.00E+00	5.10E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.82E-08	3.17E-08	1.48E-05	-1.47E-04
EP, marine [kg N eq]	2.96E-02	2.87E-03	9.77E-04	0.00E+00	0.00E+00	0.00E+00	3.43E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.96E-05	1.14E-04	6.72E-04	-8.69E-03
EP, terrestrial [Mole N eq]	3.19E-01	3.17E-02	3.87E-03	0.00E+00	0.00E+00	0.00E+00	3.59E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.27E-04	1.43E-03	2.06E-03	-9.79E-02
POCP [kg NMVOC eq]	8.10E-02	6.00E-03	1.75E-03	0.00E+00	0.00E+00	0.00E+00	9.02E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.85E-05	3.00E-04	1.16E-03	-2.66E-02
Resource Use, mineral and metals* [kg Sb eq]	8.42E-06	7.17E-08	-1.67E-08	0.00E+00	0.00E+00	0.00E+00	8.47E-06	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.31E-09	-1.37E-08	3.32E-09	-1.82E-06
Resource Use, fossil* [MJ]	3.38E+02	1.43E+01	1.73E+00	0.00E+00	0.00E+00	0.00E+00	3.57E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.62E-01	4.03E-01	1.87E+00	-1.45E+02
Water use* [m ³ world eq]	4.40E+00	6.26E-02	7.09E-02	0.00E+00	0.00E+00	0.00E+00	4.64E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.17E-03	9.55E-02	6.75E-03	-8.64E-01

GWP=Global Warming Potential; LULUC=Land Use and Land Use Change; ODP=Ozone Depletion Potential; EP=Eutrophication Potential; AP=Acidification Potential; POCP=Photochemical ozone creation potential

*The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

NSF Miller Knoll

Resource Use and Waste - 1 seat for 1 individual maintained for 10 Years

Impact Category	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
PERE [MJ]	2.29E+02	6.03E-01	1.35E-01	0.00E+00	0.00E+00	0.00E+00	2.30E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.12E-02	6.32E-02	1.69E-01	-2.45E+02
PERM [MJ]	3.15E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.15E+01	0.00E+00							
PERT [MJ]	2.61E+02	6.03E-01	1.35E-01	0.00E+00	0.00E+00	0.00E+00	2.62E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.12E-02	6.32E-02	1.69E-01	-2.45E+02
PENRE [MJ]	2.72E+02	1.54E+01	1.75E+00	0.00E+00	0.00E+00	0.00E+00	2.92E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.81E-01	4.04E-01	1.87E+00	-1.45E+02
PENRM [MJ]	6.78E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.78E+01	0.00E+00							
PENRT [MJ]	3.40E+02	1.54E+01	1.75E+00	0.00E+00	0.00E+00	0.00E+00	3.60E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.81E-01	4.04E-01	1.87E+00	-1.45E+02
SM [kg]	7.49E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.49E+00	0.00E+00							
RSF [MJ]	0.00E+00														
NRSF [MJ]	0.00E+00														
FW [m ³]	1.66E-01	2.06E-03	1.70E-03	0.00E+00	0.00E+00	0.00E+00	1.72E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.84E-05	2.25E-03	2.17E-04	-9.02E-02
HWD [kg]	3.90E-06	4.42E-11	1.13E-10	0.00E+00	0.00E+00	0.00E+00	3.90E-06	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.09E-13	2.43E-12	1.58E-10	-3.77E-06
NHWD [kg]	2.87E+00	1.33E-03	7.85E-01	0.00E+00	0.00E+00	0.00E+00	5.14E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.45E-05	4.97E-02	1.44E+00	5.67E-01
RWD [kg]	1.19E-02	4.41E-05	2.80E-05	0.00E+00	0.00E+00	0.00E+00	1.20E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.07E-07	1.72E-05	2.22E-05	-2.41E-03
HLRW [kg]	1.21E-05	5.23E-08	3.38E-08	0.00E+00	0.00E+00	0.00E+00	1.23E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.57E-10	2.22E-08	1.93E-08	-3.44E-06
ILLRW [kg]	1.19E-02	4.40E-05	2.80E-05	0.00E+00	0.00E+00	0.00E+00	1.20E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.06E-07	1.72E-05	2.22E-05	-2.41E-03
CRU [kg]	0.00E+00														
MFR [kg]	7.95E-01	0.00E+00	3.72E+00	0.00E+00	0.00E+00	0.00E+00	1.00E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.48E+00	0.00E+00	0.00E+00
MER [kg]	0.00E+00														
EE [MJ]	1.48E+00	0.00E+00	3.37E+00	0.00E+00	0.00E+00	0.00E+00	1.01E+01	0.00E+00							
PM [Disease Incidence]	1.34E-06	6.78E-08	6.81E-09	0.00E+00	0.00E+00	0.00E+00	1.43E-06	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.49E-10	1.61E-09	5.66E-09	-1.36E-07
IRP**([kBq U235 eq]	1.43E+00	3.72E-03	2.62E-03	0.00E+00	0.00E+00	0.00E+00	1.44E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.81E-05	1.37E-03	3.28E-03	-5.44E-02
ETP-fw* [CTUe]	1.66E+02	1.20E+01	2.79E+00	0.00E+00	0.00E+00	0.00E+00	1.84E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.19E-01	1.80E-01	2.73E+00	-2.87E+01
HTP-c* [CTUh]	7.59E-08	2.77E-10	6.85E-11	0.00E+00	0.00E+00	0.00E+00	7.64E-08	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.00E-12	1.40E-11	8.23E-11	-2.46E-09
HTP-nc* [CTUh]	2.14E-06	4.50E-09	8.29E-09	0.00E+00	0.00E+00	0.00E+00	2.16E-06	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.17E-11	1.12E-09	8.79E-09	-1.97E-07
SQP* [no unit]	3.05E+03	2.65E+00	1.52E-01	0.00E+00	0.00E+00	0.00E+00	3.06E+03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.94E-02	5.92E-02	1.62E-01	-1.65E+03

PERE=Renewable Primary Energy from Non-Materials; PERM=Renewable Primary Energy from Materials; PERT=Total Renewable Primary Energy; PENRE=Non-Renewable Primary Energy from Non-Materials; PENRM=Non-Renewable Primary Energy; SM=Use of Secondary Materials; RSF=Use of Renewable Secondary Fuels; NRSF=Use of Non-Renewable Primary Energy; SM=Use of Secondary Materials; RSF=Use of Renewable Secondary Fuels; NRSF=Use of Non-Renewable Primary Energy; SM=Use of Secondary Materials; RSF=Use of Renewable Secondary Fuels; NRSF=Use of Non-Renewable Primary Energy; SM=Use of Secondary Materials; RSF=Use of Renewable Secondary Fuels; NRSF=Use of Non-Renewable Primary Energy; SM=Use of Secondary Materials; RSF=Use of Renewable Secondary Fuels; NRSF=Use of Renewable Secondary Fuels; NRSF=Use of Renewable Primary Energy; SM=Use of Secondary Fuels; FW=Net Use of Fresh Water; HWD=Hazardous Waste Disposed; NHWD=Non-Hazardous Waste Disposed; RWD=Radioactive Waste Disposed; HLRW=High Level Radioactive Waste; ILLRW=Intermediate- and Low-Level Radioactive Waste; CRU=Components for Reuse; MFR=Materials for Recycling; MER=Materials for Energy Recovery; EE=Exported Energy; PM=Particulate Matter; IRP=Ionizing Human Radiation; ETP-fw=Eco-toxicity freshwater; HTP-c=Human toxicity - Cancer; HTP-nc=Human toxicity - Noncancer; SQP=Land use related impacts / soil quality

*The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

**This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

References

- 1. CEN. (2019). CSN EN 15804+A2. Retrieved from European Standards: https://www.en-standard.eu/csnen-15804-a2-sustainability-of-construction-works-environmental-product-declarations-core-rules-for-theproduct-category-of-construction-products/
- ISO 14040: 2006/ Amd 1:2020: Environmental Management Life cycle assessment Requirements and Guidelines.
- 3. ISO 14044: 2006/ Amd 1:2017/ Amd 2:2020: Environmental Management Life cycle assessment Requirements and Guidelines Amendment 1.
- 4. ISO 14025:2006 Environmental labels and declarations Type III environmental declarations Principles and Procedures.
- IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press.
- 6. Joint Research Centre of the EU Commission. (2022, July). Environmental Footprint reference packages . Retrieved from European Platform on LCA: https://eplca.jrc.ec.europa.eu/LCDN/developerEF.html
- NSF International (2014). BIFMA PCR for Seating: UNCPC 3811 version 3, valid through September 30, 2025
- 8. NSF International National Center for Sustainability Standards (2015). General Program Instructions.
- US EPA (2012). TRACI: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts. Version 2.1 – User Guide. Retrieved from https://nepis.epa.gov/Adobe/PDF/P100HN53.pdf.
- 10. US EPA (2022). Facts and Figures about Materials, Waste and Recycling. Retrieved from https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials
- 11. US EPA. (2022, December 3). Municipal Solid Waste Generation, Recycling, and Disposal in the United States: Facts and Figures for 2018. Retrieved from https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials
- 12. WAP Sustainability Consulting (2024, February). Life Cycle Assessment, HAY Seating.