

Ratio® China

Environmental Product Declaration

Date of Issue: November 11, 2025

Date of Expiration: November 11, 2030

Product Category Rules

BIFMA PCR for Tables, UNCPC 3812, version 1

Product Sub-Category: Single User – Height Adjustable Table

EN 15804+A2

ISO 14025/14040/14044

Functional Unit

1 m² maintained for a 10-year period (0.84 units of Ratio Sit-to-Stand Desk)

This EPD was not written to support comparative assertions. EPDs based on different PCRs or different calculation models may not be comparable. When attempting to compare EPDs or life cycle impacts of products from different companies, the user should be aware of the uncertainty in the final results due to and not limited to the practitioner's assumptions, the source of the data used in the study, the specifics of the product modeled, and the software tool used to conduct the study.

Environmental Product Declaration

Ratio Sit-to-Stand Table

Program Operator	NSF Certification LLC 789 N. Dixboro, Ann Arbor, MI 48105 www.nsf.org Certified Environmental Product Declaration www.nsf.org
EPD Owner Name and Address	MillerKnoll 855 East Main Ave. PO Box 302 Zeeland, MI 4964-0302 USA
Declaration Number	EPD11184
Declared Product and Functional Unit	Ratio Sit-to-Stand Table (major structural product codes include: RZTRA0816S4MX1MX1 – worksurface, RZSWPA1116 – screen, RZUTFA0791S – feet, RZUSEFA1.91S91S – legs) Functional Unit: 1 m² of physical floor space maintained for 10 years
Reference PCR and Version Number	BIFMA PCR for Tables: UNCPC 3812, version 1 EN 15804+A2
Product's intended Application and Use	Single User – Height Adjustable Table
Product RSL	10 years
Markets of Applicability	Asia Pacific, Middle East and Africa
Date of Issue	November 11, 2025
Period of Validity	5 years from date of issue
EPD Type	Product Specific
Intended Audience	Business-to-Business, Business-to-Consumer
Range of Dataset Variability	N/A
EPD Scope	Cradle to Grave
Year of reported manufacturer primary data	June 2023 – May 2024
LCA Software and Version Number	Sphera LCA for Experts (fka GaBi) 10.9
LCI Database and Version Number	Sphera Managed LCA Content (fka GaBi) Database, 2024.1
LCIA Methodology and Version Number	TRACI 2.1, IPCC AR6, EN 15804 EF 3.1
The PCR review was conducted by:	Review Panel Chaired by Dr. Thomas Gloria
This declaration was independently verified in accordance with ISO 14025: 2006, the BIFMA PCR for Tables, and EN 15804+A2 ☐ Internal External	Jack Geibig - EcoForm jgeibig@ecoform.com
This reference life cycle assessment was conducted in accordance with ISO 14044 and the reference PCRs:	WAP Sustainability
This life cycle assessment was independently verified in accordance with ISO 14044 and the reference PCR by:	Jack Geibig - EcoForm jgeibig@ecoform.com Jack Heiling
References	BIFMA PCR for Tables: UNCPC 3812, Version 1 (2021) EN 15804+A2 (2019) ISO 14025/40/44 (2006) MillerKnoll Background Report for LCA/EPD Creation Tool v1.0
Limitations:	

Environmental declarations from different programs (ISO 14025) may not be comparable. Comparison of the environmental performance of Products using EPD information shall be based on the product's use and impacts at the building level, and therefore EPDs may not be used for comparability purposes when not considering the building energy use phase as instructed under this PCR. Full conformance with the PCR for Products allows EPD comparability only when all stages of a life cycle have been considered. However, variations and deviations are possible". Example of variations: Different LCA software and background LCI datasets may lead to differences results for upstream or downstream of the life cycle stages declared.

Product Description

At Herman Miller, we are committed to constantly improving people's lives by taking great design and making it better. We study the latest ergonomic science; we test and listen to what our customers have to say. This is exactly what we did with Ratio. The result is a height-adjustable desk that's even more versatile, supporting people and businesses through changes big and small.

With the next-gen Ratio, you get to choose. Ratio is available with round legs, giving the table a lightweight look ideal for the modern office, or rectangular legs for structured, architectural appeal. The choice is yours. Giving you even more to choose from are Ratio's new mobility options, guaranteeing smooth transitions between focus work, collaborations and meetings. Castors are available for single desks in both rectangularand round-leg versions.

In multi-desk settings, the round-leg Ratio comes with castors, while the rectangular-leg version comes with

Ratio's simple, streamlined form also adapts to any configuration. Set it up in rows or unlimited clusters or position it on its own.

This document relates to Ratio Sit-to-Stand Tables. A Ratio Sit-to-Stand Table at 49.2" height with a 29.9" deep and 62" wide with two freestanding legs, electrical with worktop mounted screen and a rectangular worksurface with cutout is covered in this document.

MillerKnoll is a collective of dynamic brands that comes together to design the world we live in. The MillerKnoll brand portfolio includes Herman Miller, Knoll, Colebrook Bosson Saunders, DatesWeiser, Design Within Reach, Edelman, Geiger, HAY, HOLLY HUNT, Knoll Textiles, Maharam, Muuto, NaughtOne, and Spinneybeck|FilzFelt. MillerKnoll is an unparalleled platform that redefines modern for the 21st century by building a more sustainable, equitable, and beautiful future for all.

Over the last century, Herman Miller has been guided by a commitment to problem-solving designs that inspire the best in people. Along the way, Herman Miller has forged critical relationships with the most visionary designers of the day, from mid-century greats like George Nelson, the Eames Office, and Isamu Noguchi, to research-oriented visionaries like Robert Propst and Bill Stumpf — and with today's groundbreaking studios like Industrial Facility and Studio 7.5. From the birth of ergonomic furniture to manufacturing some of the twentieth century's most iconic pieces, Herman Miller has pioneered original, timeless design that makes an enduring impact, while building a lasting legacy of design, innovation, and social good. Herman Miller is a part of MillerKnoll, a collective of dynamic brands that come together to design the world we live in. For more information, visit hermanmiller.com/about.

Our Mission

Driven by the mission to design and make the world's best products in the most sustainable way, MillerKnoll's sustainability strategy focuses on three key areas:

- Carbon
 - Design the lowest carbon footprint products and commit to achieving net-zero carbon emissions by 20501.
- **Materials**
 - Use sustainable, 100% bio-based or recycled materials by 2050.
- Circularity

Design timeless, durable products with zero waste by 2050.

At MillerKnoll, we are committed to working closely with our suppliers to reduce our collective impact on the environment. We encourage our suppliers to minimize their operations' environmental impacts and require they assist us in decreasing our facilities' environmental effects.

Manufacturing Locations

· Dongguan, Guangdong Province, China

Warranty

Backed by MillerKnoll's 12-year warranty.

Creating Transparency on Materials

We are transparent about our materials because we believe in informed decisions. Our Ecomedes platform provides environmental product information from across our brands, including details about materials used and third-party certifications. This resource helps customers buy or specify environmentally preferable products by supplying productlevel data and automating product performance calculations that can help contribute to sustainability goals. Ecomedes is linked here.

Product Environmental Data

	Value	
Recycled Content %	12%	
Post-Consumer	4%	
Pre-Consumer	7%	
Recyclability (max %) *	52%	

^{*}This recyclability rate is the maximum amount of the product that is recyclable, based on availability of recycling facilities and ability of the product to be disassembled. Note that, per the requirements of the PCR, the End-of-Life results presented in this EPD were calculated using the US EPA's recycling rates within the 2018 Municipal Solid Waste Report for parts that can be disassembled.

Additional information, including installation and recycling instructions, can be found at

https://www.hermanmiller.com/en_apc/products/tables/sit-to-standtables/ratio/.

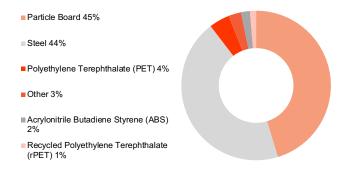
¹ MillerKnoll's net-zero commitment is subject to factors that are partly outside its control, including its value chain's ability to reduce their Scope 1 and 2 emissions (and therefore MillerKnoll's Scope 3 emissions) by 2050. In light of this, MillerKnoll is committed to achieving net-zero by 2050 and will continue to engage with stakeholders across its value chain to support them in their efforts to become net-zero by 2050

MATERIAL DECLARATION

Functional Unit

The functional unit is one m2 of physical floor space, maintained over a 10-year period, including packaging materials used for the final assembled product. One table is 1.2 m². The product has met ANSI/BIFMA X5.5 requirements for a 10-year lifetime, so no replacements are required. To meet the functional unit, 0.84 units of Ratio Sit-to-Stand Table are required.

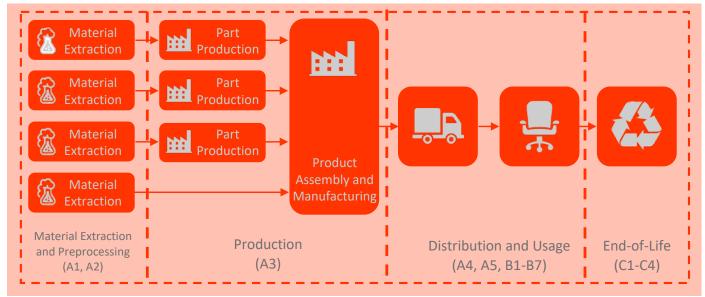
Reference Flow and Product Specifications


One Ratio Sit-to-Stand Table (major structural product codes include RZTRA0816S4MX1MX1 - worksurface, RZSWPA1116 - screen, RZUTFA0791S - feet, RZUSEFA1.91S91S - legs) at 49.2" height with a 29.9" deep and 62" wide with two freestanding legs, electrical with worktop mounted screen and a rectangular worksurface with cutout was modeled for this EPD. This table is determined to be a representative product based on sales of the variations. The results in this EPD are only representative of this configuration. While the exact configuration purchased may be slightly different, it is expected to have impacts within 10% of this representative configuration. The results presented on the subsequent pages consist of the impacts of Ratio Sit-to-Stand Table made at Dongguan, China. The product composition table to the right is relevant for the product made in Dongguan, China.

System Boundary

Cradle-to-Grave

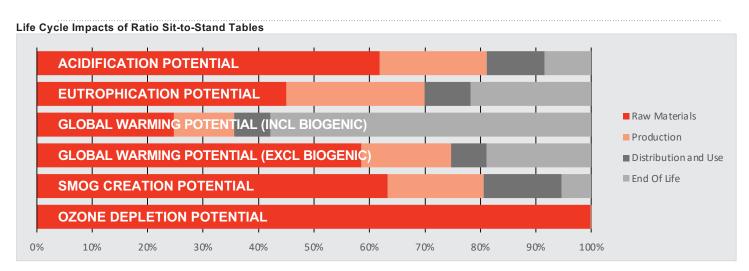
Content Declaration


The table to the right details the materials included in a specific SKU for the product made in China, summarized in the chart below. In order to achieve the functional unit, 0.84 unit of products is required.

Material		Mass (kg)	Mass (%)	Resource
Particle Board		30.26	45%	Virgin Renewable
Steel		29.61	44%	Virgin Non-renewable and Recycled Content
Polyethylene Terephthalate (PET)	2.98	4%	Virgin Non-renewable
Other		1.80	3%	Virgin Non-renewable
Acrylonitrile Butadie Styrene (ABS)	ne	1.29	2%	Virgin Non-renewable
Recycled Polyethyle Terephthalate (rPE1		0.89	1%	Recycled Content
To	otal	66.83	100%	
Packaging*	ı	Vlass (kg)	Mass (%)	Resource
Corrugate		6.91	96%	Recycled Content
PE Bag		0.14	2%	Virgin Non-Renewable
EPS		0.11	2%	Virgin Non-Renewable
To	otal	7.16	100%	

*Returnable/reusable shipping blankets also available. Packaging in the LCA does not include blankets and was calculated to be disposed upon installation per regional disposal rates as required by the PCR.

This product contains no substances prohibited by the regulations applicable at the time of EPD publication. It respects the restrictions on use of hazardous substances as defined in the REACH directive EC 1907/2006.



Life Cycle Impact Assessment - BIFMA PCR for Production in China

Environmental Impacts were calculated using the GaBi software platform. Impact results according to the BIFMA PCR have been calculated using IPCC AR6 GWP₁₀₀ and TRACI 2.1 characterization factors. Additionally, LCI indicators have been calculated for primary energy, water usage, renewable and non-renewable resources used as energy carriers and materials, and recovered energy. Results presented in this report are for 1 m² of floor space maintained for 10 years.

The results presented here are for Ratio Sit-to-Stand Tables (major structural product codes include: RZTRA0816S4MX1MX1 - worksurface, RZSWPA1116 screen, RZUTFA0791S - feet, RZUSEFA1.91S91S - legs). Additionally, the results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins, or risks.

LCA Impact Category	Unit	Total	Raw Material Production	Product Production	Distribution and Retail	End of Life
Acidification Potential	kg SO ₂ eq	4.97E-01	3.08E-01	9.57E-02	5.18E-02	4.21E-02
Eutrophication Potential	kg N eq	5.55E-02	2.50E-02	1.38E-02	4.62E-03	1.21E-02
Global Warming Potential Including Biogenic Carbon	kg CO ₂ eq	1.73E+02	4.29E+01	1.89E+01	1.12E+01	1.00E+02
Global Warming Potential Excluding Biogenic Carbon	kg CO ₂ eq	1.73E+02	1.01E+02	2.80E+01	1.12E+01	3.27E+01
Photochemical Ozone Creation Potential (Smog)	kg O₃ eq	8.45E+00	5.35E+00	1.47E+00	1.19E+00	4.50E-01
Ozone Depletion Potential	kg CFC-11 eq	9.07E-07	9.06E-07	1.09E-09	2.85E-14	9.63E-14
LCI Impact Category	Unit	Total	Raw Material Production	Product Production	Distribution and Retail	End of Life
Primary Energy Demand (Renewable and Non- Renewable)	MJ (net cal value)	1.88E+03	1.24E+03	4.49E+02	1.55E+02	4.11E+01
Fresh Water Consumption	kg	5.49E+02	2.99E+02	1.95E+02	2.17E+01	3.22E+01
Renewable Primary Resources Used as Energy Carrier	MJ (net cal value)	6.04E+02	5.11E+02	9.31E+01	0.00E+00	0.00E+00
Renewable Primary Resources Used as Materials	MJ (net cal value)	2.58E+02	1.32E+02	1.15E+02	6.43E+00	3.69E+00
Non-renewable Primary Resources Used as Energy Carrier	MJ (net cal value)	1.18E+02	1.09E+02	8.88E+00	0.00E+00	0.00E+00
Non-renewable Primary Resources Used as Materials	MJ (net cal value)	1.63E+03	1.11E+03	3.34E+02	1.48E+02	3.74E+01
Recovered Energy	MJ (net cal value)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

APPENDIX: EN 15804+A2

Additionally, results have been calculated using LCIA methodologies for core environmental impact categories specified in EN 15804+A2, as well as LCI indicators required by EN15804+A2 reference package EF 3.1. The results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins, or risks. Values in the scenario tables below are reported per functional unit, which is 1 m² of physical floor space covered for 10 years. To fulfill this functional unit, 0.84 units of product are required.

LCA Scenario Details

Functiona	

Parameter	Value
Declared Unit	1 m ²
Number of Occupants	1
Reference Service Life Required	10 years
Biogenic Carbon in Product	15.1 kg C
Biogenic Carbon in Packaging	3.17 kg C

Reference Service Life

Parameter	Value per functional unit		
Reference Service Life	10 Years		
Design Application Parameters	Use as indicated in product brochure and warranty		
Declared Product Properties	Properties given in product description on page 4		
Indoor environment	Typical office and home environment		
Use conditions	Typical office and home use		

A4: Transport to the Building Site

Parameter	Value per functional unit
Transportation Type	Diesel Truck
Fuel Consumption	0.621 L/km
Distance	2,253 km
Capacity Utilization	61%
Capacity utilization volume factor	1
Weight of product (kg)	55.8
Volume (m ³)	1.25

A5: Installation in the Building

Parameter	Value per functional unit
Packaging Waste Produced	5.98 kg
Installation Assumptions	No product waste, Installed with hand tools.

B1: Use

Parameter	Value per functional unit	
Per the PCR, no energy use is modeled for use phase. However, electricity consumption for 1 hour of use is estimated at 6.32E-04		
kWh per hour		

DO: Maint

B2: Maintenance			
Parameter	Value per functional unit		
Maintenance Process	No maintenance is expected for this product		
Maintenance cycle	0		
Ancillary Materials for maintenance (kg/cycle)	0		
Waste materials resulting from maintenance (kg)	0		
Net freshwater consumption during maintenance (m³)	0		
Energy input during maintenance (kWh)	0		

B3: Repair

Parameter	Value per functional unit
Repair process	No repairs are expected for this product
Inspection process	No repairs are expected for this product
Repair cycle (#/RSL)	0
Ancillary materials (kg)	0
Waste materials from repair (kg)	0
Net freshwater consumption during repair (m³)	0
Energy input during repair (kWh)	0

B4: Replacements

Parameter	Value per functional unit
Replacement cycle (#/RSL)	0
Energy input during replacement (kWh)	0
Exchange of worn parts during the products life cycle (kg)	0

B5: Refurbishment

Parameter	Value per functional unit
Refurbishment process	No refurbishment is expected for this product
Refurbishment cycle (#/RSL)	0
Energy input during refurbishment (kWh)	0
Material input for refurbishment (kg)	0
Waste material resulting from refurbishment (kg)	0

B6 and B7: Use of energy and Use of Water

Parameter	Value per functional unit
Ancillary materials (kg)	0
Net freshwater consumption (m ³)	0
Power output of equipment (kW)	0.126
Characteristic performance	n/a

C1-C4: End-of-Life

Parameter	Value per functional unit
Weight of Product Collected (kg)	55.8
Weight to Recycling (kg)	5.02
Weight to Energy Recovery (kg)	10.16
Weight to Landfill (kg)	40.6
Distance to Recycling (km)	50
Distance to Energy Recovery (km)	100
Distance to Landfill (km)	50

D: Benefits and Loads Beyond the System Boundary

Faranietei	value per functional unit
Includes all flows leaving the system	not allocated as co-products and
have passed the end-of-waste state	e. Includes loads from processing
recycled materials. Credits are cal	culated based on the amount of
usable material and energy sent to	the next product system. Credits
not applied to the portion of flows of	derived from secondary sources.

Life Cycle Stages

The results are provided according to the following life cycle modules:

Module	Description
A1	Product Stage: Raw Material Supply
A2	Product Stage: Transport
A3	Product Stage: Manufacturing
A4	Construction Process Stage: Transport
A5	Construction Process Stage: Installation
B1	Use Stage: Use
B2	Use Stage: Maintenance
В3	Use Stage: Repair
B4	Use Stage: Replacement
B5	Use Stage: Refurbishment
В6	Operational Energy Use
B7	Operational Water Use
C1	EOL: Deconstruction
C2	EOL: Transport
C3	EOL: Waste Processing
C4	EOL: Disposal
D	Benefits beyond system

Life Cycle Impact Assessment – EN 15804+A2 (EF 3.1) for Production in China

EN 15804+A2 Results – 1 m² physical floorspace maintained for 10 Years

Impact Category	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
GWP _{Total} [kg CO ₂ eq]	6.18E+01	1.12E+01	1.19E+01	0.00E+00	2.87E-01	1.38E+01	7.44E+01	-1.61E+01							
GWP _{Fossil} [kg CO ₂ eq]	1.29E+02	1.12E+01	1.40E-01	0.00E+00	2.87E-01	2.63E+00	1.87E+00	-1.61E+01							
GWP _{Biogenic} [kg CO ₂ eq]	-6.72E+01	4.66E-03	1.17E+01	0.00E+00	1.20E-04	1.12E+01	7.26E+01	0.00E+00							
GWP _{LULUC} [kg CO₂ eq]	7.80E-02	6.32E-03	3.84E-05	0.00E+00	1.62E-04	1.77E-04	3.97E-03	-6.50E-03							
ODP [kg CFC 11 eq]	6.38E-07	1.42E-12	2.46E-14	0.00E+00	3.66E-14	7.31E-13	4.04E-12	-3.17E-08							
AP [Mole H+ eq]	4.46E-01	5.56E-02	1.40E-04	0.00E+00	8.72E-04	6.14E-03	1.14E-02	-4.97E-02							
EP, freshwater [kg PO ₄ eq]	1.15E-03	5.73E-05	3.01E-06	0.00E+00	1.47E-06	-7.18E-07	1.26E-04	-4.26E-04							
EP, marine [kg N eq]	1.23E-01	2.77E-02	5.51E-05	0.00E+00	4.21E-04	2.67E-03	1.41E-02	-1.20E-02							
EP, terrestrial [Mole N eq]	1.34E+00	3.06E-01	6.45E-04	0.00E+00	4.65E-03	3.24E-02	4.14E-02	-1.17E-01							
POCP [kg NMVOC eq]	3.66E-01	5.67E-02	1.21E-04	0.00E+00	8.43E-04	6.89E-03	2.42E-02	-3.64E-02							
Resource Use, mineral and metals* [kg Sb eq]	1.98E-03	1.51E-06	4.78E-09	0.00E+00	3.88E-08	-7.36E-08	8.62E-08	-8.37E-04							
Resource Use, fossil* [MJ]	1.56E+03	1.48E+02	5.42E-01	0.00E+00	3.81E+00	5.22E+00	2.79E+01	-1.91E+02							
Water use* [m³ world eq]	1.86E+01	6.66E-01	1.06E-02	0.00E+00	1.71E-02	1.09E+00	2.24E-01	-1.85E+00							

GWP=Global Warming Potential; LULUC=Land Use and Land Use Change; ODP=Ozone Depletion Potential; EP=Eutrophication Potential; AP=Acidification Potential; POCP=Photochemical ozone creation potential

^{*}The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

Resource Use and Waste - 1 m² physical floorspace maintained for 10 years

Impact Category	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
PERE [MJ]	8.52E+02	6.43E+00	3.36E-02	0.00E+00	1.65E-01	3.23E-01	3.17E+00	-1.04E+02							
PERM [MJ]	2.47E+02	6.43E+00	3.36E-02	0.00E+00	1.65E-01	3.23E-01	3.17E+00	-9.82E+01							
PERT [MJ]	1.10E+03	1.29E+01	6.71E-02	0.00E+00	3.30E-01	6.45E-01	6.34E+00	-2.02E+02							
PENRE [MJ]	1.56E+03	1.48E+02	5.42E-01	0.00E+00	3.81E+00	5.22E+00	2.79E+01	-1.92E+02							
PENRM [MJ]	1.18E+02	0.00E+00													
PENRT [MJ]	1.68E+03	1.48E+02	5.42E-01	0.00E+00	3.81E+00	5.22E+00	2.79E+01	-1.92E+02							
SM [kg]	1.09E+01	0.00E+00													
RSF [MJ]	5.80E-23	0.00E+00													
NRSF [MJ]	6.81E-22	0.00E+00													
FW [m ³]	4.95E-01	2.17E-02	2.70E-04	0.00E+00	5.56E-04	2.51E-02	6.25E-03	-5.04E-02							
HWD [kg]	3.25E-05	2.01E-08	8.46E-11	0.00E+00	5.16E-10	7.10E-10	5.32E-09	-1.01E-07							
NHWD [kg]	3.18E+00	1.46E-02	1.77E-01	0.00E+00	3.76E-04	8.32E-01	3.07E+01	-6.64E-01							
RWD [kg]	3.28E-02	3.84E-04	3.13E-06	0.00E+00	9.87E-06	1.30E-04	3.51E-04	-5.08E-03							
HLRW [kg]	4.30E-05	4.55E-07	3.37E-09	0.00E+00	1.17E-08	1.54E-07	3.08E-07	-6.17E-06							
ILLRW [kg]	3.28E-02	3.84E-04	3.12E-06	0.00E+00	9.86E-06	1.30E-04	3.51E-04	-5.08E-03							
CRU [kg]	0.00E+00														
MFR [kg]	3.33E+00	0.00E+00	1.33E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00								
MER [kg]	2.56E-02	0.00E+00	9.79E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00								
EE [MJ]	1.14E-01	0.00E+00	3.23E-01	0.00E+00	2.06E+01	1.29E+01	0.00E+00								
PM [Disease Incidence]	4.83E-06	5.65E-07	1.53E-09	0.00E+00	9.66E-09	3.75E-08	1.14E-07	-6.05E-07							
IRP**([kBq U235 eq]	3.00E+00	3.26E-02	3.29E-04	0.00E+00	8.37E-04	1.12E-02	5.12E-02	-4.17E-01							
ETP-fw* [CTUe]	5.72E+02	1.16E+02	5.50E-01	0.00E+00	2.97E+00	2.88E+00	4.94E+01	-6.52E+01							
HTP-c* [CTUh]	2.28E-07	2.88E-09	1.02E-11	0.00E+00	5.79E-11	1.48E-10	5.13E-10	-2.63E-08							
HTP-nc* [CTUh]	6.62E-07	4.57E-08	2.99E-10	0.00E+00	1.16E-09	1.15E-08	6.21E-08	-7.21E-08							
SQP* [no unit]	4.33E+02	2.89E+01	9.83E-02	0.00E+00	7.43E-01	6.75E-01	3.28E+00	-1.50E+02							

PERE=Renewable Primary Energy from Non-Materials; PERM=Renewable Primary Energy from Materials; PERT=Total Renewable Primary Energy from Non-Materials; PENRM=Non-Renewable Primary Energy from Materials; PENRT=Total Non-Renewable Primary Energy; SM=Use of Secondary Materials; RSF=Use of Renewable Secondary Fuels; NRSF=Use of Non-Renewable Primary Energy; SM=Use of Secondary Materials; RSF=Use of Renewable Secondary Fuels; NRSF=Use of Non-Renewable Primary Energy; SM=Use of Secondary Materials; RSF=Use of Renewable Secondary Fuels; NRSF=Use of Non-Renewable Primary Energy; SM=Use of Secondary Materials; RSF=Use of Renewable Secondary Fuels; NRSF=Use of Non-Renewable Primary Energy; SM=Use of Secondary Materials; RSF=Use of Renewable Secondary Fuels; NRSF=Use of Non-Renewable Primary Energy; SM=Use of Renewable Secondary Fuels; NRSF=Use of Non-Renewable Primary Energy; NRSF=Use of Renewable Secondary Fuels; NRSF=Use of Non-Renewable Primary Energy; NRSF=Use of Renewable Secondary Fuels; NRSF=Use of Renewable Primary Energy; NRSF=Use of Renewable Primary Energy Ene Secondary Fuels; FW=Net Use of Fresh Water; HWD=Hazardous Waste Disposed; NHWD=Non-Hazardous Waste Disposed; HLRW=High Level Radioactive Waste; HWD=Radioactive Waste; HWD=Radioactive Waste; HWD=Radioactive Waste; HURW=High Level Radioactive Waste; HURW=High Lev ILLRW=Intermediate- and Low-Level Radioactive Waste; CRU=Components for Reuse; MFR=Materials for Recycling; MER=Materials for Energy Recovery; EE=Exported Energy; PM=Particulate Matter; IRP=Ionizing Human Radiation; ETP-fw=Eco-toxicity freshwater; HTP-c=Human toxicity - Cancer; HTP-nc=Human toxicity - Noncancer; SQP=Land use related impacts / soil quality

^{*}The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

^{**}This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

References

- CEN. (2019). CSN EN 15804+A2. Retrieved from European Standards: https://www.en-standard.eu/csn-en-15804-a2sustainability-of-construction-works-environmental-product-declarations-core-rules-for-the-product-category-of-construction-
- ISO 14040: 2006/ Amd 1:2020: Environmental Management Life cycle assessment Requirements and Guidelines.
- ISO 14044: 2006/ Amd 1:2017/ Amd 2:2020: Environmental Management Life cycle assessment Requirements and Guidelines - Amendment 1.
- ISO 14025:2006 Environmental labels and declarations Type III environmental declarations Principles and Procedures.
- IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press.
- Joint Research Centre of the EU Commission. (2022, July). Environmental Footprint reference packages . Retrieved from European Platform on LCA: https://eplca.jrc.ec.europa.eu/LCDN/developerEF.html
- 7. NSF International (2021). BIFMA PCR for Tables: UNCPC 3812 version 1, valid through January 31, 2026
- 8. NSF International National Center for Sustainability Standards (2015). General Program Instructions.
- US EPA (2012). TRACI: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts. Version 2.1 - User Guide. Retrieved from https://nepis.epa.gov/Adobe/PDF/P100HN53.pdf.
- 10. US EPA (2022). Facts and Figures about Materials, Waste and Recycling. Retrieved from https://www.epa.gov/facts-and-figuresabout-materials-waste-and-recycling/national-overview-facts-and-figures-materials
- 11. US EPA. (2022, December 3). Municipal Solid Waste Generation, Recycling, and Disposal in the United States: Facts and Figures for 2018. Retrieved from https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overviewfacts-and-figures-materials
- 12. WAP Sustainability Consulting (2024, December). Life Cycle Assessment, MillerKnoll Background Report for LCA/EPD Creation Tool v1.0.