Environmental Product Declaration

HRBW-35N Handrails
ENVIRONMENTAL PRODUCT DECLARATION

HRBW Handrails

| Program Operator | NSF Certification LLC
| | 789 N. Dixboro, Ann Arbor, MI 48105
| | www.nsf.org |

| Manufacturer Name and Address | Construction Specialties Inc.
| | 375-399 S Broad St, Hughesville, PA 17737 |

| Declaration Number | EPD10534 |

| Declared Product and Functional Unit | HRBW-35N
| | Functional Unit: 1 linear meter of installed wall protection product for 75 years |

| | Part B: Wall and Door Protection EPD Requirements, Version 1.0, 2019 |

| Product’s intended Application and Use | Providing protection for vertical surfaces of wall or door |

| Product RSL | 15 years |

| Markets of Applicability | North America |

| Date of Issue | January 29th, 2021 |

| Period of Validity | 5 years from date of issue |

| EPD Type | Product Specific |

| Range of Dataset Variability | N/A |

| EPD Scope | Cradle-to-Grave |

| Year of reported manufacturer primary data | 2017 |

| LCA Software and Version Number | GaBi 8.7.0.18 |

| LCI Database and Version Number | GaBi Database Version 8.7, Service Pack 35 |

| LCIA Methodology and Version Number | TRACI 2.1
| | CML 2001-Jan 2016 |

The sub-category PCR review was conducted by:

- Dr. Lindita Bushi – Athena Sustainable Materials Institute
- Lise Lauren – EarthShift Global
- Jim Mellentine – Ramboll Environment

This declaration was independently verified in accordance with ISO 14025: 2006. The UL Environment “Part A: Life Cycle Assessment Calculation Rules and Report Requirements” v3.2 (December 2018), based on CEN Norm EN 15804 (2012) and ISO 21930:2017, serves as the core PCR, with additional considerations from the USGBC/UL Environment Part A Enhancement (2017)
- [] Internal
- [X] External

This life cycle assessment was conducted in accordance with ISO 14044 and the reference PCR by:
- Tony Favilla
- tfavilla@nsf.org

This life cycle assessment was independently verified in accordance with ISO 14044 and the reference PCR by:
- Kai Wang, LCACP
- WAP Sustainability Consulting

This life cycle assessment was independently verified in accordance with ISO 14044 and the reference PCR by:
- Jack Geibig – EcoForm
- jgeibig@ecoform.com

Limitations:
Environmental declarations from different programs (ISO 14025) may not be comparable.
Comparison of the environmental performance of Products using EPD information shall be based on the product’s use and impacts at the building level, and therefore EPDs may not be used for comparability purposes when not considering the building energy use phase as instructed under this PCR.
Full conformance with the PCR allows EPD comparability only when all stages of a life cycle have been considered. However, variations and deviations are possible. Example of variations:
Different LCA software and background LCI datasets may lead to differences results for upstream or downstream of the life cycle stages declared.
Additional information on this LCA can be obtained by contacting the manufacturer at www.c-sgroup.com
Company
Founded in 1948, Construction Specialties (CS) is a family-owned, building products manufacturer that provides solutions to challenges architects, designers, contractors, building owners, and facility managers face every day. Since inventing the first extruded louver, Construction Specialties has become a global leader in Acrovyn® interior wall protection, impact-resistant doors and frames, entrance flooring including Gridline®, expansion joint covers, architectural louvers and grilles, sun controls, explosion and pressure relief vents and cubicle curtains and tracks. CS draws upon extensive expertise to provide high-quality products – many of which are a part of the Cradle to Cradle Certified™ Products Program. For details on this program and to find out which CS products are certified, please go to c-sgroup.com.

Product Description
This EPD represents Construction Specialties’ full offering of HRBW Handrail. This Acrovyn handrail is designed to minimize the visual impact on a wall, featuring a real wood back which adds an extra touch of elegance to the aesthetics. The rail’s Quick Lock™ mounting feature simplifies installation time by 50%.

HRBW-35N Handrail is categorized under Construction Specification Institute (CSI) Masterformat codes 10 26 00 and 10 26 16.

<table>
<thead>
<tr>
<th>Table 1: Product names and masses per functional unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representative Product</td>
</tr>
<tr>
<td>HRBW-35N</td>
</tr>
</tbody>
</table>

The representative was chosen because it is the highest volume seller in this product category.
Application

Handrail products are typically used in indoor commercial buildings. They can be installed on various types of walls and provide both decorative and protective functions.

Declaration of Methodological Framework

This LCA is a cradle-to-grave study, as represented by the flow diagram below. A summary of the life cycle stages can be found in Table 6. The reference service life (RSL) is outlined in the Reference Service Life & Estimated Building Service section of this EPD. The cut-off criteria are described in Cut-off Rules, and the allocation procedures are described in the Allocation section. No known flows are deliberately excluded from this EPD. Third party verified ISO 14040/44 secondary LCI data sets contribute more than 67% of total impacts in all impact categories required by the PCR.

Figure 1: Flow Diagram
Technical Requirements

The following technical data describe the product undergoing the life cycle assessment.

Table 2: Technical Details

<table>
<thead>
<tr>
<th>Specification Characteristic</th>
<th>Test Method</th>
<th>Test Result*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire Performance</td>
<td>ASTM E84</td>
<td>Wood Part:</td>
</tr>
<tr>
<td></td>
<td>ASTM D-543</td>
<td>Flame Spread: 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Smoke Developed: 15</td>
</tr>
<tr>
<td>Chemical and Stain Resistance -</td>
<td></td>
<td>Conducted</td>
</tr>
<tr>
<td>Fungal Resistance -</td>
<td>ASTM G-22</td>
<td>Conducted</td>
</tr>
<tr>
<td></td>
<td>ASTM GG-21</td>
<td>Conducted</td>
</tr>
<tr>
<td>Impact Strength [inch] -</td>
<td>ASTM F476-84</td>
<td>19*</td>
</tr>
<tr>
<td>VOC Emissions -</td>
<td>CDPH 01350</td>
<td>Compliant</td>
</tr>
</tbody>
</table>

*Test results are available at https://www.c-sgroup.com/

Properties of Declared Product as Delivered

HRBW-35N Handrails delivered in lengths specified by the buyer and/or cut to size in the field.

Material Composition

Table 3: Material Composition

<table>
<thead>
<tr>
<th>Material</th>
<th>Mass %</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>2.70%</td>
</tr>
<tr>
<td>Acrovyn*</td>
<td>7.88%</td>
</tr>
<tr>
<td>Aluminum</td>
<td>33.41%</td>
</tr>
<tr>
<td>Nylon</td>
<td>1.95%</td>
</tr>
<tr>
<td>Steel</td>
<td>5.42%</td>
</tr>
<tr>
<td>Wood</td>
<td>48.63%</td>
</tr>
</tbody>
</table>

* Acrovyn is a formulated material proprietary to Construction Specialties. The LCA model for this EPD accounted for CS's proprietary formulation and included standard raw materials and optional pigments.

This product does not contain substances that are required to be disclosed per relevant regulations.
Manufacturing

The raw materials for the product were obtained from various parts of the USA. Some components are supplied pre-fabricated by the suppliers. Such components include irregular shaped metal profiles, splice, brackets, and end caps used on HRBW Handrails. All components that are not pre-fabricated, including Acrovyn profiles, are extruded or shaped in Muncy and Hughesville, PA facilities, and wooden profiles as the handrail bases are fabricated in Montgomery, PA facility. Acrovyn compound is first fed to extruders to produce Acrovyn sheets. Acrovyn sheets are pressed for texture, cut and heat-bended to form the Acrovyn handrail cover for HRBW handrails. Raw wood is dried, cut and planed to specified sizes, then sanded, polished and painted to desired finishes. The Acrovyn handrail cover and the finished wood profile are then cut to size and assembled with the pre-fabricated components with fasteners to form the product and packaged for delivery.

Environment & Health During Manufacturing

During the manufacturing of the products covered in the EPD, all legal regulations regarding emissions to air, wastewater discharge, solid waste disposal and noise emissions are followed.

Packaging

Depending on the quantity and size dimensions, handrails are delivered in packaging of different sizes. The average packaging utilized in the shipment of the product is provided in Table 4.

<table>
<thead>
<tr>
<th>Material</th>
<th>Amount (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLPDE</td>
<td>1.86E-04</td>
</tr>
<tr>
<td>Cardboard</td>
<td>2.03E-01</td>
</tr>
<tr>
<td>LDPE</td>
<td>5.03E-02</td>
</tr>
<tr>
<td>Wood</td>
<td>1.99E-02</td>
</tr>
</tbody>
</table>

Transportation

It is assumed that all the raw materials sourced from the US are distributed by truck. An ingredient-weighted average distance using the locations of suppliers and the manufacturing facilities was calculated and used in the model.

An average shipping distance of 1,529 km from the manufacturing facility to the customer was utilized and was calculated from sales records. The transportation distance for all waste flows is assumed to be 161 km based on a conservative assumption.
Product Installation
Detailed installation instructions are provided online at c-sgroup.com. Installation equipment such as drills and saws common to construction work are required though not included in the study as these are multi-use tools and the impacts-per-functional unit is considered negligible. All waste generated during installation, including packaging waste, is disposed as per PCR Part A Section 2.8.5. Details are provided in Table 9.

Environment & Health During Installation
All recommended personal protective equipment (PPE) should be utilized during installation, as indicated on the SDS found online.

Use
The assumptions required to model the maintenance phase are detailed in PCR Part B Section 3.3. These assumptions are listed in the table below.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input Per Square Meter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaning Per Week</td>
<td>1</td>
<td>#</td>
</tr>
<tr>
<td>Cleaning Per 75 Years</td>
<td>3900</td>
<td>#</td>
</tr>
<tr>
<td>Water Usage Per Week</td>
<td>3.44E-02</td>
<td>Liter</td>
</tr>
<tr>
<td>Hydrochloric Acid (32%) Usage Per Week</td>
<td>1.56E-02</td>
<td>kg</td>
</tr>
<tr>
<td>Water Usage Per 75 Years</td>
<td>1.34E+02</td>
<td>Liter</td>
</tr>
<tr>
<td>Hydrochloric Acid (32%) Usage Per 75 Years</td>
<td>6.09E+01</td>
<td>kg</td>
</tr>
</tbody>
</table>

Reference Service Life & Estimated Building Service
The reference service life for the product is 15 years, as required by PCR Part B Section 2.13. For a building’s estimated service life of 75 years, there will be four replacements needed after initial installation.

Re-use Phase & Disposal
Handrails may be recyclable if local recycling facilities are available and may be incinerated for energy recovery if local facilities are available. Re-use after service is not recommended. End-of-life LCA modeling is based on the requirements of PCR Part A. Section 2.8.5.
LCA CALCULATION RULES

Functional Unit

The functional unit of the wall surface protection product is 1 linear meter of product over a building’s estimated service life of 75 years.

System Boundary

The type of EPD is cradle-to-grave. All relevant LCA modules are included and are summarized in Table 6.

Table 6: System Boundary

<table>
<thead>
<tr>
<th>Module Name</th>
<th>Description</th>
<th>Analysis Period</th>
<th>Summary of Included Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Product Stage: Raw Material Supply</td>
<td>2017</td>
<td>Raw Material sourcing and processing as defined by secondary data.</td>
</tr>
<tr>
<td>A2</td>
<td>Product Stage: Transport</td>
<td>2017</td>
<td>Shipping from supplier to manufacturing site. Fuel use requirements estimated based on product weights and estimated distance.</td>
</tr>
<tr>
<td>A3</td>
<td>Product Stage: Manufacturing</td>
<td>2017</td>
<td>Energy, water and material inputs required for manufacturing products from raw materials. Packaging materials and manufacturing waste are included as well.</td>
</tr>
<tr>
<td>A4</td>
<td>Construction Process Stage: Transport</td>
<td>2017</td>
<td>Shipping from manufacturing site to project site. Fuel use requirements estimated based on product weights and mapped distance.</td>
</tr>
<tr>
<td>A5</td>
<td>Construction Process Stage: Installation</td>
<td>2017</td>
<td>Installation waste and packaging material waste. As per Part A Section 2.8.4.2, the product is sold as a system and the impacts from the production of installation material is declared in A1-A3.</td>
</tr>
<tr>
<td>B1</td>
<td>Use Stage: Use</td>
<td>2017</td>
<td>The use of the product does not involve any consumption of energy and resources</td>
</tr>
<tr>
<td>B2</td>
<td>Use Stage: Maintenance</td>
<td>2017</td>
<td>Cleaning energy, water, and materials, including refinishing the product.</td>
</tr>
<tr>
<td>B3</td>
<td>Use Stage: Repair</td>
<td>2017</td>
<td>Materials provided to repair the product.</td>
</tr>
<tr>
<td>B4</td>
<td>Use Stage: Replacement</td>
<td>2017</td>
<td>Total materials and energy required to manufacture a replacement.</td>
</tr>
<tr>
<td>B5</td>
<td>Use Stage: Refurbishment</td>
<td>2017</td>
<td>Materials and energy required to refurbish the product. The product does not require refurbishment once installed.</td>
</tr>
<tr>
<td>B6</td>
<td>Operational Energy Use</td>
<td>2017</td>
<td>The product does not impact the operational energy use of the building.</td>
</tr>
<tr>
<td>B7</td>
<td>Operational Water Use</td>
<td>2017</td>
<td>The product does not impact the operational energy use of the building.</td>
</tr>
<tr>
<td>C1</td>
<td>EOL: Deconstruction</td>
<td>2017</td>
<td>No inputs required for deconstruction.</td>
</tr>
<tr>
<td>C2</td>
<td>EOL: Transport</td>
<td>2017</td>
<td>Shipping from project site to landfill. Fuel use requirements estimated based on product weight and mapped distance.</td>
</tr>
<tr>
<td>C3</td>
<td>EOL: Waste Processing</td>
<td>2017</td>
<td>Waste processing not required. All waste can be processed as is.</td>
</tr>
<tr>
<td>C4</td>
<td>EOL: Disposal</td>
<td>2017</td>
<td>The disposal process of the product varies with the material type as per Part A Section 2.8.5. The impacts from landfilling are modeled based on secondary data.</td>
</tr>
<tr>
<td>D</td>
<td>Benefits beyond system</td>
<td>MND</td>
<td>Credits from energy or material capture. This module is not considered.</td>
</tr>
</tbody>
</table>
Estimates & Assumptions
All estimates and assumptions are within the requirements of ISO 14040/44 and PCR Part A & B. The majority of the estimations are within the primary data. The primary data was collected as annual totals including all utility usage and production information. For the LCA, the consumption information was divided by the production to create an energy and water use-per-kilogram. The manufacturing waste generation quantity was estimated based on the manufacturer’s process improvement project. Another assumption is that the installation tools are used enough times that the per square meter impacts are negligible, while the electricity to power the tools is included.

Cut-off Rules
All inputs in which data were available were included. No known flows are deliberately excluded from this EPD.

Material inputs greater than 1% (based on total mass of the final product) were included within the scope of analysis. Material inputs less than 1% were included if sufficient data was available to warrant inclusion and/or the material input was thought to have significant environmental impact. Cumulative excluded material inputs and environmental impacts are less than 5% based on total weight of the functional unit.

The list of excluded materials and energy inputs include:

- The colorants used in Acrovyn (0%-0.45%).

Data Sources
Primary data were collected by facility personnel and was used for all manufacturing processes. Whenever available, supplier data was used for raw materials used in the production process. When primary data did not exist, secondary data for raw material production was utilized from GaBi Database Version 8.7, Service Pack 35.
Data Quality

The geographical scope of the manufacturing portion of the life cycle is Muncy and Hughesville PA. All primary data were collected from the manufacturer. The geographic coverage of primary data is considered excellent. The primary data provided by the manufacturer represent all information for calendar year 2017. Using this data meets the PCR requirements. Time coverage of this data is considered very good. Primary data provided by the manufacturer is specific to the technology that Construction Specialties uses in manufacturing their products. It is site-specific and considered of good quality. It is worth noting that the energy and water used in manufacturing the products includes overhead energy such as lighting, heating and sanitary use of water. Sub-metering would improve the technological coverage of data quality. Data necessary to model cradle-to-gate unit processes was sourced from GaBi LCI datasets. Improved life cycle data from suppliers would improve technological coverage.

Period Under Review

The period under review is calendar year 2017.

Allocation

General principles of allocation were based on ISO 14040/44. Where possible, allocation was avoided. When allocation was necessary it was done on a physical mass basis. In the study, the annual facility-level electricity, water, and natural gas usages were allocated to products based on the mass of the annual production. Allocation was most prevalent in the secondary GaBi datasets used to represent upstream processes. As a default, GaBi datasets use a physical mass basis for allocation.

Table 7: Description of the system boundary modules included in the LCA

<table>
<thead>
<tr>
<th>PRODUCT STAGE</th>
<th>CONSTRUCTION PROCESS STAGE</th>
<th>USE STAGE</th>
<th>END-OF-LIFE STAGE</th>
<th>BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
<td>A5</td>
</tr>
<tr>
<td>Raw material supply</td>
<td>Transport</td>
<td>Manufacturing</td>
<td>Transport from gate to site</td>
<td>Assembly/Install</td>
</tr>
<tr>
<td>Cradle to Grave</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

An X in the table above signifies that a module was included in the life cycle assessment. MND stands for Module Not Declared and signifies that a life cycle stage was not evaluated in the life cycle assessment.
LCA SCENARIOS AND ADDITIONAL TECHNICAL INFORMATION

Table 8: Transport to the building site (A4) per linear meter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Type</td>
<td>Diesel</td>
<td></td>
</tr>
<tr>
<td>Liters of fuel</td>
<td>38.81</td>
<td>l/100km</td>
</tr>
<tr>
<td>Vehicle Type</td>
<td>Truck – Trailer, basic enclosed/ 45,000 lb. payload</td>
<td></td>
</tr>
<tr>
<td>Transport distance</td>
<td>1529.04</td>
<td>km</td>
</tr>
<tr>
<td>Capacity utilization</td>
<td>78</td>
<td>%</td>
</tr>
<tr>
<td>Weight of products transported</td>
<td>3.25</td>
<td>kg</td>
</tr>
<tr>
<td>Capacity utilization volume factor</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Table 9: Installation into the building (A5) per linear meter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancillary Materials*</td>
<td>N/A*</td>
<td>kg</td>
</tr>
<tr>
<td>Electricity consumption</td>
<td>6.00E-02</td>
<td>kWh</td>
</tr>
<tr>
<td>Waste materials at the construction site before waste processing, generated by product installation</td>
<td>2.73E-01</td>
<td>kg</td>
</tr>
<tr>
<td>Plastic Recycling (15%)</td>
<td>7.58E-03</td>
<td>kg</td>
</tr>
<tr>
<td>Plastic Landfilling (68%)</td>
<td>3.43E-02</td>
<td>kg</td>
</tr>
<tr>
<td>Plastic Incineration (17%)</td>
<td>8.59E-03</td>
<td>kg</td>
</tr>
<tr>
<td>Total Plastic Packaging Waste</td>
<td>5.05E-02</td>
<td>kg</td>
</tr>
<tr>
<td>Pulp and Wood Recycling (75%)</td>
<td>1.67E-01</td>
<td>kg</td>
</tr>
<tr>
<td>Pulp and Wood Landfilling (20%)</td>
<td>4.46E-02</td>
<td>kg</td>
</tr>
<tr>
<td>Pulp and Wood Incineration (5%)</td>
<td>1.11E-02</td>
<td>kg</td>
</tr>
<tr>
<td>Total Pulp Packaging Waste</td>
<td>2.23E-01</td>
<td>kg</td>
</tr>
<tr>
<td>Biogenic carbon contained in packaging</td>
<td>8.29E-01</td>
<td>kg CO₂</td>
</tr>
<tr>
<td>VOC emissions</td>
<td><500</td>
<td>µg/m³</td>
</tr>
</tbody>
</table>

*The manufacturing of fasteners has been accounted in Stage A1-A3.
Table 10: Reference Service Life (RSL)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSL</td>
<td>15</td>
<td>Years</td>
</tr>
<tr>
<td>Declared product properties and finishes, etc</td>
<td>See Table 2</td>
<td>Units as appropriate</td>
</tr>
<tr>
<td>Design application parameters</td>
<td>Installation as per recommendation by manufacturer</td>
<td>Units as appropriate</td>
</tr>
<tr>
<td>An assumed quality of work, when installed in accordance with the manufacturer’s instructions</td>
<td>Accepted industry standard</td>
<td>Units as appropriate</td>
</tr>
<tr>
<td>Indoor environment</td>
<td>Normal building operating conditions</td>
<td>Units as appropriate</td>
</tr>
<tr>
<td>Use conditions</td>
<td>No special use conditions required</td>
<td>Units as appropriate</td>
</tr>
<tr>
<td>Maintenance</td>
<td>See Table 5 and Table 11</td>
<td>Units as appropriate</td>
</tr>
</tbody>
</table>

Table 11: Maintenance (B2) - Per Estimated Service Life (ESL) of the building (75 years)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance process information</td>
<td>PCR Part B Prescribed</td>
<td>-</td>
</tr>
<tr>
<td>Maintenance cycle</td>
<td>780</td>
<td>Cycles/ RSL</td>
</tr>
<tr>
<td>Maintenance cycle</td>
<td>3900</td>
<td>Cycles/ ESL</td>
</tr>
<tr>
<td>Net freshwater consumption specified by water source and fate</td>
<td>1.34E-01</td>
<td>m³</td>
</tr>
<tr>
<td>Hydrochloric Acid (32%)</td>
<td>6.09E+01</td>
<td>kg</td>
</tr>
<tr>
<td>Direct emissions to ambient air (Hydrochloric Acid Evaporation)</td>
<td>19.49</td>
<td>kg</td>
</tr>
</tbody>
</table>

Table 12: Repair (B3) - Per Estimated Service Life (ESL) of the building (75 years)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repair process information</td>
<td>Use Fil-Stik to patch the dent. Use Pro-Mark II for stain restoration.</td>
<td>-</td>
</tr>
<tr>
<td>Repair cycle</td>
<td>Contingent</td>
<td>cycles/RSL</td>
</tr>
<tr>
<td>Repair cycle</td>
<td>Contingent</td>
<td>cycles/ESL</td>
</tr>
<tr>
<td>Ancillary materials</td>
<td>3.57E-01</td>
<td>kg</td>
</tr>
<tr>
<td>Waste materials from repair</td>
<td>0</td>
<td>kg</td>
</tr>
<tr>
<td>Direct emission to ambient air, soil and water</td>
<td><=1.22E-01</td>
<td>kg</td>
</tr>
<tr>
<td>Further assumptions for scenario development</td>
<td>It is assumed the supplied repairing kit is used up during the life of the product.</td>
<td>-</td>
</tr>
</tbody>
</table>

*Calculated based on SDS
Table 13: Replacement (B4) - Per Estimated Service Life (ESL) of the building (75 years)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Service Life</td>
<td>15</td>
<td>Years</td>
</tr>
<tr>
<td>Replacement cycle</td>
<td>4</td>
<td>(ESL/RSL)-1</td>
</tr>
<tr>
<td>Energy input, specified by activity, type and amount</td>
<td>2.40E-01</td>
<td>kWh</td>
</tr>
</tbody>
</table>

Table 14: End-of-life (C1-C4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumptions for scenario development</td>
<td>PCR Part A Prescribed</td>
<td>kg</td>
</tr>
<tr>
<td>Collected as mixed construction waste</td>
<td>2.98E+00</td>
<td>kg</td>
</tr>
<tr>
<td>Non-metal Landfilling (100%)</td>
<td>1.82E+00</td>
<td>kg</td>
</tr>
<tr>
<td>Metal Waste Recycling (85%)</td>
<td>9.83E-01</td>
<td>kg</td>
</tr>
<tr>
<td>Metal Waste Landfilling (15%)</td>
<td>1.73E-01</td>
<td>kg</td>
</tr>
<tr>
<td>Removals of biogenic carbon (excluding packaging)</td>
<td>9.51E+00</td>
<td>kg CO2</td>
</tr>
</tbody>
</table>

Per the PCR requirements, modules B1, B5, B6, and B7 shall be reported as “0” impact. As such, the scenario tables for these modules are excluded from this EPD.
LCA Results

All results are given per functional unit, which is 1 linear meter of installed product over an estimated building life of 75 years. Environmental Impacts were calculated using the GaBi software platform. Impact results have been calculated using both TRACI 2.1 and CML 2001-Jan 2016 characterization factors. LCIA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks.

Table 15: Key of Acronyms Used in the Results Tables

<table>
<thead>
<tr>
<th>LCIA Indicators</th>
<th>LCI Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADPe Abiotic depletion potential for non-fossil</td>
<td>RPR<sub>E</sub> Use of renewable primary energy</td>
</tr>
<tr>
<td>resources</td>
<td>excluding renewable primary energy resources used</td>
</tr>
<tr>
<td></td>
<td>as raw materials</td>
</tr>
<tr>
<td>ADPI</td>
<td>RPR<sub>M</sub> Use of renewable primary energy</td>
</tr>
<tr>
<td></td>
<td>resources used as raw materials</td>
</tr>
<tr>
<td>AP Akciification potential of soil and water</td>
<td>RPR<sub>T</sub> Total use of renewable primary</td>
</tr>
<tr>
<td></td>
<td>energy resources</td>
</tr>
<tr>
<td>EP Eutrophication potential</td>
<td>NRPR<sub>E</sub> Use of non-renewable primary</td>
</tr>
<tr>
<td></td>
<td>energy resources</td>
</tr>
<tr>
<td></td>
<td>use as raw materials</td>
</tr>
<tr>
<td></td>
<td>NRPR<sub>M</sub> Use of non-renewable primary</td>
</tr>
<tr>
<td></td>
<td>energy resources</td>
</tr>
<tr>
<td></td>
<td>use as raw materials</td>
</tr>
<tr>
<td></td>
<td>NRPR<sub>T</sub> Total use of non-renewable primary</td>
</tr>
<tr>
<td></td>
<td>energy resources</td>
</tr>
<tr>
<td></td>
<td>HWD Disposed-of-hazardous waste</td>
</tr>
<tr>
<td></td>
<td>NHWD Disposed-of non-hazardous waste</td>
</tr>
<tr>
<td></td>
<td>HLRW High-level radioactive waste, conditioned, to</td>
</tr>
<tr>
<td></td>
<td>final repository</td>
</tr>
<tr>
<td></td>
<td>ILLRW Intermediate- and low-level radioactive waste,</td>
</tr>
<tr>
<td></td>
<td>conditioned, to final repository</td>
</tr>
<tr>
<td></td>
<td>Carbon Emissions and Removals</td>
</tr>
<tr>
<td></td>
<td>BCRP Biogenic Carbon Removal from Product</td>
</tr>
<tr>
<td></td>
<td>BCEP Biogenic Carbon Emission from Product</td>
</tr>
<tr>
<td></td>
<td>BCRK Biogenic Carbon Removal from Packaging</td>
</tr>
<tr>
<td></td>
<td>BCEK Biogenic Carbon Emission from Packaging</td>
</tr>
<tr>
<td></td>
<td>BCRP Biogenic Carbon Removal from Product</td>
</tr>
<tr>
<td></td>
<td>BCEP Biogenic Carbon Emission from Product</td>
</tr>
<tr>
<td></td>
<td>BCRK Biogenic Carbon Removal from Packaging</td>
</tr>
<tr>
<td></td>
<td>BCEK Biogenic Carbon Emission from Packaging</td>
</tr>
<tr>
<td></td>
<td>BCEP Biogenic Carbon Emission from Product</td>
</tr>
<tr>
<td></td>
<td>BCRK Biogenic Carbon Removal from Packaging</td>
</tr>
<tr>
<td></td>
<td>BCEK Biogenic Carbon Emission from Packaging</td>
</tr>
</tbody>
</table>
ENVIRONMENTAL PRODUCT DECLARATION

HRBW Handrails

The results are provided based on a functional unit of 1 linear meter of installed product over an estimated building service life of 75 years.

Table 16: LCIA Impacts

<table>
<thead>
<tr>
<th>Impact Category</th>
<th>A1-A3</th>
<th>A4</th>
<th>A5</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
<th>B6</th>
<th>B7</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADPe [kg Sb eq]</td>
<td>4.39E-05</td>
<td>7.06E-08</td>
<td>6.80E-09</td>
<td>0.00E+00</td>
<td>2.63E-04</td>
<td>5.28E-07</td>
<td>1.76E-04</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>6.81E-09</td>
<td>0.00E+00</td>
<td>3.62E-08</td>
<td>4.84E-04</td>
<td></td>
</tr>
<tr>
<td>ADP [MJ]</td>
<td>1.64E+02</td>
<td>5.23E+00</td>
<td>3.51E-01</td>
<td>0.00E+00</td>
<td>3.47E+02</td>
<td>2.07E+01</td>
<td>6.87E+02</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>5.04E-01</td>
<td>0.00E+00</td>
<td>0.13E+00</td>
<td>1.23E+03</td>
<td></td>
</tr>
<tr>
<td>AP [kg SO2 eq]</td>
<td>6.73E-02</td>
<td>1.40E-03</td>
<td>2.09E-04</td>
<td>0.00E+00</td>
<td>4.76E-02</td>
<td>1.18E-03</td>
<td>2.90E-01</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>8.42E-05</td>
<td>0.00E+00</td>
<td>3.53E-03</td>
<td>4.11E-01</td>
<td></td>
</tr>
<tr>
<td>EP [kg Phosphate eq]</td>
<td>5.42E-03</td>
<td>3.86E-04</td>
<td>6.85E-05</td>
<td>0.00E+00</td>
<td>6.55E-03</td>
<td>2.57E-04</td>
<td>3.60E-02</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>2.39E-05</td>
<td>0.00E+00</td>
<td>3.09E-03</td>
<td>5.39E-02</td>
<td></td>
</tr>
<tr>
<td>GWP [kg CO2 eq]</td>
<td>1.10E+01</td>
<td>3.72E-01</td>
<td>1.19E-01</td>
<td>0.00E+00</td>
<td>2.50E+01</td>
<td>6.44E-01</td>
<td>5.35E+01</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>3.57E-02</td>
<td>0.00E+00</td>
<td>1.88E+00</td>
<td>9.26E+01</td>
<td></td>
</tr>
<tr>
<td>ODP [kg CFC 11 eq]</td>
<td>3.92E-10</td>
<td>3.51E-17</td>
<td>8.44E-17</td>
<td>0.00E+00</td>
<td>6.83E-13</td>
<td>1.03E-14</td>
<td>1.57E-09</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>3.39E-18</td>
<td>0.00E+00</td>
<td>3.20E-16</td>
<td>1.96E-09</td>
<td></td>
</tr>
<tr>
<td>POCP [kg Ethene eq]</td>
<td>5.76E-03</td>
<td>-5.30E-04</td>
<td>4.18E-05</td>
<td>0.00E+00</td>
<td>4.17E-03</td>
<td>1.91E-04</td>
<td>2.49E-02</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>-2.87E-05</td>
<td>0.00E+00</td>
<td>9.71E-04</td>
<td>3.55E-02</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.1 Results

<table>
<thead>
<tr>
<th>Impact Category</th>
<th>A1-A3</th>
<th>A4</th>
<th>A5</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
<th>B6</th>
<th>B7</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP [kg SO2 eq]</td>
<td>6.59E-02</td>
<td>1.91E-03</td>
<td>3.41E-04</td>
<td>0.00E+00</td>
<td>5.59E-02</td>
<td>1.32E-03</td>
<td>3.12E-01</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>1.13E-04</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>EP [kg N eq]</td>
<td>2.87E-03</td>
<td>1.55E-04</td>
<td>7.07E-05</td>
<td>0.00E+00</td>
<td>6.73E-03</td>
<td>1.43E-04</td>
<td>2.29E-02</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>1.04E-05</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>GWP [kg CO2 eq]</td>
<td>1.10E+01</td>
<td>3.71E-01</td>
<td>1.14E-01</td>
<td>0.00E+00</td>
<td>2.49E+01</td>
<td>6.34E-01</td>
<td>5.29E+01</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>3.57E-02</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>ODP [kg CFC 11 eq]</td>
<td>3.92E-10</td>
<td>3.52E-17</td>
<td>8.47E-17</td>
<td>0.00E+00</td>
<td>6.86E-13</td>
<td>1.03E-14</td>
<td>1.57E-09</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>3.40E-18</td>
<td>0.00E+00</td>
<td>3.21E-16</td>
<td>1.96E-09</td>
<td></td>
</tr>
<tr>
<td>Resources [MJ]</td>
<td>1.66E+01</td>
<td>7.00E-01</td>
<td>3.15E-02</td>
<td>0.00E+00</td>
<td>3.18E+01</td>
<td>2.90E+00</td>
<td>7.02E+01</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>6.75E-02</td>
<td>0.00E+00</td>
<td>1.76E-01</td>
<td>1.22E+02</td>
<td></td>
</tr>
<tr>
<td>POCP [kg O3 eq]</td>
<td>7.82E-01</td>
<td>4.35E-02</td>
<td>1.72E-03</td>
<td>0.00E+00</td>
<td>1.11E+00</td>
<td>2.43E-02</td>
<td>3.41E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>2.52E-03</td>
<td>0.00E+00</td>
<td>2.27E-02</td>
<td>5.40E+00</td>
<td></td>
</tr>
</tbody>
</table>

The products within this product category have varying impacts depending on the exact material composition and product features. Because of that, the highest and lowest impact products have results shown in the tables above indicating the range of impacts found in this category.

* As required by the Product Category Rules, the GWP value includes biogenic carbon.

Table 17: Carbon Removals and Emissions

<table>
<thead>
<tr>
<th>Impact</th>
<th>Value</th>
<th>Impact</th>
<th>Value</th>
<th>Impact</th>
<th>Value</th>
<th>Impact</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCRP [kg CO2]</td>
<td>9.51E+00</td>
<td>BCRK [kg CO2]</td>
<td>8.29E+01</td>
<td>BCEW [kg CO2]</td>
<td>0.00E+00</td>
<td>CCR [kg CO2]</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>BCEP [kg CO2]</td>
<td>7.45E+00</td>
<td>BCEK [kg CO2]</td>
<td>3.74E+01</td>
<td>CCE [kg CO2]</td>
<td>0.00E+00</td>
<td>CWNR [kg CO2]</td>
<td>0.00E+00</td>
</tr>
</tbody>
</table>
The results are provided based on a functional unit of 1 linear meter of installed product over an estimated building service life of 75 years.

<table>
<thead>
<tr>
<th>Impact Category</th>
<th>A1-A3</th>
<th>A4</th>
<th>A5</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
<th>B6</th>
<th>B7</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource Use</td>
<td></td>
</tr>
<tr>
<td>RPRE [MJ]</td>
<td>8.62E+01</td>
<td>1.63E-01</td>
<td>5.20E-02</td>
<td>0.00E+00</td>
<td>1.14E+02</td>
<td>3.09E-01</td>
<td>3.46E+02</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>1.57E-02</td>
<td>0.00E+00</td>
<td>1.07E-01</td>
<td>5.47E+02</td>
<td></td>
</tr>
<tr>
<td>RPRM [MJ]</td>
<td>0.00E+00</td>
<td></td>
</tr>
<tr>
<td>RPRM [MJ]</td>
<td>8.62E+01</td>
<td>1.63E-01</td>
<td>5.20E-02</td>
<td>0.00E+00</td>
<td>1.14E+02</td>
<td>3.09E-01</td>
<td>3.46E+02</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>1.57E-02</td>
<td>0.00E+00</td>
<td>1.07E-01</td>
<td>5.47E+02</td>
<td></td>
</tr>
<tr>
<td>NRPRE [MJ]</td>
<td>1.81E+02</td>
<td>5.26E+00</td>
<td>4.26E-01</td>
<td>0.00E+00</td>
<td>3.98E+02</td>
<td>2.10E+01</td>
<td>7.53E+02</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>5.07E-01</td>
<td>0.00E+00</td>
<td>1.40E+00</td>
<td>1.36E+03</td>
<td></td>
</tr>
<tr>
<td>NRPRT [MJ]</td>
<td>1.81E+02</td>
<td>5.26E+00</td>
<td>4.26E-01</td>
<td>0.00E+00</td>
<td>3.98E+02</td>
<td>2.10E+01</td>
<td>7.53E+02</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>5.07E-01</td>
<td>0.00E+00</td>
<td>1.40E+00</td>
<td>1.36E+03</td>
<td></td>
</tr>
<tr>
<td>SM [kg]</td>
<td>0.00E+00</td>
<td></td>
</tr>
<tr>
<td>RSF [MJ]</td>
<td>0.00E+00</td>
<td></td>
</tr>
<tr>
<td>NRSF [MJ]</td>
<td>0.00E+00</td>
<td></td>
</tr>
<tr>
<td>RE [MJ]</td>
<td>0.00E+00</td>
<td></td>
</tr>
<tr>
<td>FW [m³]</td>
<td>1.70E-01</td>
<td>6.27E-04</td>
<td>2.02E-04</td>
<td>0.00E+00</td>
<td>2.65E-01</td>
<td>2.26E-03</td>
<td>6.86E-01</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>6.04E-05</td>
<td>0.00E+00</td>
<td>3.59E-04</td>
<td>1.12E+00</td>
<td></td>
</tr>
</tbody>
</table>

Waste Outputs															
HWD [kg]	7.88E-04	4.26E-08	7.77E-10	0.00E+00	1.11E-06	2.18E-05	3.15E-03	0.00E+00	0.00E+00	0.00E+00	4.11E-09	0.00E+00	4.90E-09	3.96E-03	
NHWD [kg]	2.15E+00	1.98E-04	8.12E-02	0.00E+00	5.03E-01	9.29E-03	1.49E+01	0.00E+00	0.00E+00	0.00E+00	1.91E-05	0.00E+00	1.48E+00	1.91E+01	
HLRW [kg]	7.92E-06	1.41E-08	3.51E-08	0.00E+00	2.60E-05	1.10E-07	3.19E-05	0.00E+00	0.00E+00	0.00E+00	1.35E-09	0.00E+00	1.70E-08	6.60E-05	
ILLRW [kg]	6.46E-03	1.16E-05	2.93E-05	0.00E+00	2.01E-02	8.90E-05	2.61E-02	0.00E+00	0.00E+00	0.00E+00	1.12E-06	0.00E+00	1.35E-05	5.28E-02	
CRU [kg]	0.00E+00														
MR [kg]	0.00E+00														
MER [kg]	0.00E+00														
EE [MJ]	0.00E+00														

The products within this product group have varying impacts depending on the exact material composition and product features. Because of that, the highest and lowest impact products have results shown in the tables above indicating the range of impacts found in this category.
LCA Interpretation
From the perspective of the service life of a whole building, the two stages with the most prominent impacts are the maintenance stage (B2) from cleaning (28% of GWP, 54% to ADPe, and >10% in all other LCI and LCIA impacts) and the replacement stage (B4) (59% of GWP, 36% to ADPe, and >50% in all other impacts except ODP). Though the cleaning assumptions prescribed by the PCR may not fully reflect real world practice, the results suggest that the cumulative impacts from cleaning the product over the lifetime of a building are significant. With regard to the reported impacts in the replacement stage, these values will change based on the length of time the customer uses the product. If the customer uses the product for more than 15 years, the impacts in B4 will go down. If the customer uses the product for less than 15 years, the impacts in B4 will go up.

Extraordinary Effects
Fire
The products’ fire performance can be found in the technical specification found in Table 2.

Water
Should the product become flooded, the water should be removed by means of extraction and drying and the product should behave as originally intended. There are no environmental impacts associated with the product being flooded.

Mechanical Destruction
If the product is mechanically destroyed, it should be disposed of using standard procedures and replaced in a timely manner.

Environmental Activities & Certifications
All general information about the environmental certifications of Construction Specialties’ products can be found on Construction Specialties’ Sustainability website. Product-specific environment certification information can be located at each product detail webpage under the tab “Data Sheets & Sustainability”.

References

ISO 21930:2017 Sustainability in buildings and civil engineering works – Core rules for environmental product declarations of construction products and services.

TRACI 2.0: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts 2.0