Environmental Product Declaration – Firetex® FX9500 series

Epoxy intumescent coatings suitable for cellulosic fire protection. Designed for application by airless spray to provide fire resistance for periods of up to 120 minutes on structural steel. An exterior durable intumescent coating, which can be applied directly onto blast cleaned steel.

The product image to the right is an example of a Firetex FX9500 series product. The relevant Firetex FX9500 series formula is shown in Table 1 on page 2 of the EPD.

Program Operator | NSF International
Declaration Holder | The Sherwin-Williams Company
Declaration Prepared by | Doug Mazeffa (sustainability@sherwin.com) April Morris (sustainability@sherwin.com)

Declaration Number | EPD10564
Declared Product | Firetex FX9500 series
Product Category and Subcategory | Architectural Coatings – Exterior Coatings
Program Operator | NSF International
ncss@nsf.org
Reference PCR | PCR for Architectural Coatings – 7-18-2015

Date of Issue | April 12, 2021
Period of Validity | 5 Years

Contents of the Declaration
– Product definition and material characteristics
– Overview of manufacturing process
– Information about in-use conditions
– Life cycle assessment results
– Testing verifications

The PCR review was conducted by Thomas P. Gloria, Ph. D.
t.gloria@industrial-ecology.com

This EPD was independently verified by NSF International in accordance with ISO 21930 and ISO 14025.

☐ Internal ☐ External

This life cycle assessment was independently verified in accordance with ISO 14044 and the reference PCR by

Tony Favilla afavilla@nsf.org
Jack Geibig – EcoForm jgeibig@ecoform.com

Functional Unit: 1m² of covered and protected substrate for a period of 60 years (the assumed average lifetime of a building)

Market-Based Lifetime Used in Assessment | 10 years
Design Lifetime Used in Assessment | N/A – Primer/Other
Test Methods Used to Calculate Design Life | N/A – Primer/Other
LCA Software Program | GaBi
Estimated Amount of Colorant | Varies (see Table 2)
Data Quality Assessment Score | Good
Manufacturing Location(s) | Various Plants Globally

In order to support comparative assertions, this EPD meets all comparability requirements stated in ISO 14025:2006. However, differences in certain assumptions, data quality, and variability between LCA data sets may still exist. As such, caution should be exercised when evaluating EPDs from different manufacturers, as the EPD results may not be entirely comparable. Any EPD comparison must be carried out at the building level per ISO 21930 guidelines. The results of this EPD reflect an average performance by the product and its actual impacts may vary on a case-to-case basis.
Product Definition:

The Firetex FX9500 series are architectural coatings manufactured by The Sherwin-Williams Company, headquartered in Cleveland, Ohio. Firetex FX9500 series is manufactured in a number of Sherwin-Williams facilities across the globe and the data used by the LCA were representative of all Sherwin-Williams facilities in which the Firetex FX9500 series was produced. These coatings are designed to cover and protect metal architectural surfaces such as rebar. For information about specific products, please visit www.sherwin.com.

Product Classification and Description:

The Firetex FX9500 products listed below are included within this assessment. For information on other attributes of this product, please visit https://protectiveemea.sherwin-williams.com/.

Table 1. List of Firetex FX9500 Formulas Assessed by LCA Model and Report.

<table>
<thead>
<tr>
<th>Product Number</th>
<th>Base Type as Defined by PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>B59W09500</td>
<td>Primer/Other</td>
</tr>
<tr>
<td>B59LV9500</td>
<td>Primer/Other</td>
</tr>
</tbody>
</table>

Under the Product Category Rule (PCR) for Architectural Coatings, Firetex FX9500 falls under the following heading:

- “a decorative or protective paint or coating that is formulated for interior or exterior architectural substrates including, but not limited to: drywall, stucco, wood, metal, concrete, and masonry.”

Architectural coatings are manufactured in a way similar to other paint and coating products. Raw materials are manually added in appropriate quantities into a high-speed disperser which are mixed. The product is then moved via compressed air or gravity and filled into containers and transported to the distribution center and finally to the point of sale. The product is then transported to the site where it is applied. The applied coating adheres to the substrate where it remains until the substrate is disposed. Any unused coating will be disposed by the user as well. Because the functional unit mandates a 60-year product life, multiple repaints were necessary and were accounted for by the LCA models.

The typical composition of Firetex FX9500 is shown by % weight below.

- Solvent (<35%)
- Resin (20%-30%)
- Extender Pigments (25%-45%)
Table 2. List of Hazardous ingredients in Firetex FX9500 series formulas (as mixed).

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Percentage</th>
<th>CAS #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoxy Polymer</td>
<td>12.5 - 25</td>
<td>25068-38-6</td>
</tr>
<tr>
<td>Xylene, mixed isomers</td>
<td>≤10</td>
<td>1330-20-7</td>
</tr>
<tr>
<td>Trimethylolpropane triacrylate</td>
<td>≤4.3</td>
<td>15625-89-5</td>
</tr>
<tr>
<td>Orthoboric Acid, Zinc Salt</td>
<td>≤3.4</td>
<td>12767-90-7</td>
</tr>
<tr>
<td>tert-Butylphenyl diphenyl phosphate</td>
<td>≤3.5</td>
<td>56803-37-3</td>
</tr>
<tr>
<td>Triphenyl Phosphate</td>
<td>≤2.3</td>
<td>115-86-6</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>≤1.5</td>
<td>100-41-4</td>
</tr>
<tr>
<td>2-Ethyl-2-(hydroxymethyl)-1,3-propanediol</td>
<td>≤0.15</td>
<td>77-99-6</td>
</tr>
<tr>
<td>1,3,5-Triazine-2,4,6-triamine</td>
<td>5 - 12.5</td>
<td>108-78-1</td>
</tr>
<tr>
<td>Fatty acids, tall-oil, reaction products with tetraethylenepentamine</td>
<td>5 - 12.5</td>
<td>68953-36-6</td>
</tr>
<tr>
<td>Tri(dimethylaminomethyl)phenol</td>
<td>≤1.5</td>
<td>90-72-2</td>
</tr>
<tr>
<td>Triphenyl Phosphate</td>
<td>≤0.9</td>
<td>115-86-6</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>≤1.5</td>
<td>100-41-4</td>
</tr>
<tr>
<td>3,6,9-triazaundecamethylene diamine</td>
<td>≤0.5</td>
<td>112-57-2</td>
</tr>
</tbody>
</table>

Other than the materials listed above in Table 2, there are no additional ingredients present which, within the current knowledge of the supplier and in the concentrations applicable, are classified as hazardous to health or the environment and hence require reporting. For additional information about product hazards, please refer to the Safety Data Sheet for the Firetex FX9500 formula available on www.sherwin.com.

About Sherwin-Williams:

For 150 years, Sherwin-Williams has provided contractors, builders, property managers, architects and designers with the trusted products they need to build their business and satisfy customers. Firetex FX9500 is just one more way we bring you industry-leading coating technology — innovation you can pass on to your customers. Plus, with more than 4,000 stores and 2,400 sales representatives, personal service and expert advice is always available near jobsites. To find out more about Firetex FX9500, please visit https://protectiveemea.sherwin-williams.com/.
Definitions:

Acronyms & Abbreviated Terms:

- **ACA**: American Coating Association
- **ASTM**: A standards development organization that serves as an open forum for the development of international standards. ASTM methods are industry-recognized and approved test methodologies for demonstrating the durability of an architectural coating in the United States.
- **ecoinvent**: a life cycle database that contains international industrial life cycle inventory data on energy supply, resource extraction, material supply, chemicals, metals, agriculture, waste management services, and transport services.
- **EPA WARM model**: United States Environmental Protection Agency Waste Reduction Model.
- **EPD**: Environmental Product Declaration. EPDs are form of as Type III environmental declarations under ISO 14025. They are the summary document of data collected in the LCA as specified by a relevant PCR. EPDs can enable comparison between products if the underlying studies and assumptions are similar.
- **GaBi**: Created by PE INTERNATIONAL GaBi Databases are LCA databases that contain ready-to-use Life Cycle Inventory profiles.
- **LCA**: Life Cycle Assessment or Analysis. A technique to assess environmental impacts associated with all the stages of a product’s life from cradle to grave (i.e., from raw material extraction through materials processing, manufacture, distribution, use, repair and maintenance, and disposal or recycling).
- **NCSS**: NSF International’s National Center for Sustainability Standards
- **PCR**: Product Category Rule. A PCR defines the rules and requirements for creating EPDs of a certain product category.
- **TRACI**: Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts.

Terminology:

- **Architectural coating**: a coating recommended for field application to stationary structures or their appurtenances at the site of installation, to portable buildings, to pavements, or to curbs. For purposes of this PCR an ‘architectural coating’ does not include adhesives and coatings for shop applications or original equipment manufacturing, nor does it include coatings solely for application to non-stationary structures, such as airplanes, ships, boats, and railcars. Please see the product category requirements in Section 1.1 of the PCR.
- **Biologic growth or bio deterioration**: any undesirable change in material properties brought about by the activities of microorganisms.
- **Blistering**: the formation of dome shaped hollow projections in paints or varnish films resulting from the local loss of adhesion and lifting of the film from the surface or coating.
- **Burnish resistance**: the resistance of a coating to an increase in gloss or sheen due to polishing or rubbing.
- **Design life**: The estimated lifetime of a coating based solely on its hiding and performance characteristics determined by results in certain ASTM durability tests.
- **Durability**: the degree to which coatings can withstand the destructive effect of the conditions to which they are subjected and how long they retain an acceptable appearance and continue to protect the substrate.
• **Erosion**: the wearing away of the top coating of a painted surface e.g., by chalking, or by the abrasive action of windborne particles of grit, which may result in exposure of the underlying surface. The degree of resistance is dependent on the amount of coating retained.

• **Flaking/Peeling**: the phenomenon manifested in paint films by the actual detachment of pieces of the film itself either from its substrate or from paint previously applied. Peeling can be considered as an aggravated form of flaking. It is frequently due to the collection of moisture beneath the film.

• **Gloss**: a value of specular reflection which is often used to categorize certain types of paints.

• **Intermediate processing**: the conversion of raw materials to intermediates (e.g. titanium dioxide ore into titanium dioxide pigment, etc.).

• **Market-based life**: The estimated lifetime of a coating based off the actual use pattern of the product type. In this instance, a repaint may occur before the coating fails.

• **Pigment**: the material(s) that give a coating its color.

• **Primary materials**: resources extracted from nature. Examples include titanium dioxide ore, crude oil, etc. that are used to create basic materials used in the production of architectural coatings (e.g., titanium dioxide).

• **Resin/Binder**: acts as the glue or adhesive to adhere the coating to the substrate.

• **Scrubability or scrub resistance**: the ability of a coating to resist being worn away or to maintain its original appearance when rubbed repetitively with an abrasive material.

• **Secondary materials**: recovered, reclaimed, or recycled content that is used to create basic materials to be used in the production of architectural coatings.

• **Washability**: the ease with which the dirt can be removed from a paint surface by washing; also refers to the ability of the coating to withstand washing without removal or substantial damage.
Underlying Life Cycle Assessment Methodology:

Functional Unit:

Per the reference PCR, the functional unit for the study was covering and protecting 1m2 of substrate for a period of 60 years (the assumed lifetime of a building). The product has no additional functionalities beyond what is stated by the functional unit.

In the reference PCR, product life for architectural coatings was calculated both in terms of a typical market life (10 years) and a technical life (either 5, 10, or 20 years) depending on performance in certain durability tests/methodologies prescribed in the reference PCR). Since the product being assessed fell under the primer designation, no design life was needed and only the market lifetime was utilized. It should be noted that given the application of the product, substrates will only be coated one time over the lifetime of the building as oftentimes the substrate is part of a larger assembly. This was considered in order to calculate the amount of coating typically needed to satisfy the functional unit.

In practice, however, the design life of the protective system will vary from project to project depending on the building requirements, thickness applied, and the exposure environment. Refer to the bespoke project specification for details on the design life of the coating system.

Table 3. Formula Lifetimes and Quantity of Coating Needed to Satisfy Functional Unit

<table>
<thead>
<tr>
<th>Product Formula</th>
<th>B59W09500</th>
<th>B59V09500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality Level</td>
<td>Primer/Other</td>
<td>Primer/Other</td>
</tr>
<tr>
<td>Market-Based Lifetime (years)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Corresponding Design Life (years)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Total Quantity Needed using Market-Based Life (kg)3</td>
<td>3.30</td>
<td>3.34</td>
</tr>
<tr>
<td>Tint Needed - Market (grams)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Tint Needed - Design (grams)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Tinting:

No tint is added to this product, and it was not included as part of the LCA.

Allocation Rules:

In accordance with the reference PCR, allocation was avoided whenever possible, however if allocation could not be avoided, the following hierarchy of allocation methods was utilized:

- Mass, or other biophysical relationship; and
- Economic value.

In the LCA models, mass allocation was ONLY used during packaging and end of life-stages.

2 See reference PCR for background on quality levels for technical performance.
3 Value includes 10% over-purchase stipulated by reference PCR.
Treatment of Biogenic Carbon:

In accordance with the reference PCR, global warming values were calculated and presented both including and excluding biogenic carbon.
System Boundary:

This LCA included all relevant steps in the coating manufacturing process as described by the reference PCR. The system boundary began with the extraction of raw materials to be used in the Firetex FX9500 coating and its formula is manufactured in a way similar to other architectural paint and coating products. The raw materials are manually added in appropriate quantities into a high-speed disperser which are mixed. The product is then moved via compressed air or gravity and filled into containers and shipped to a distribution center and then to the point of sale. A customer travels to the store to purchase the product and transports the coating to the site where it is applied. The applied coating adheres to the substrate where it remains until the substrate is disposed. Any unused coating will be disposed by the customer as well. Because the functional unit mandates a 60-year product life, multiple repaints were necessary and were accounted for by the LCA models. The system boundary ends with the end-of-life stage. This can be seen in Figure 1, below.

As described in the reference PCR, the following items were excluded from the assessment and they were expected to not substantially affect the results.

- personnel impacts;
- research and development activities;
- business travel;
- any secondary packaging (pallets, for example);
- all point of sale infrastructure; and
- the coating applicator.
Figure 1. Diagram of System Boundary for the EPD.

Cut-Off Rules:

The cut-off rules prescribed by the reference PCR required a minimum of 95% of the total mass, energy, and environmental relevance be captured by the LCA models. The formula was modeled to over 99.8% of its material content by weight. No significant flows were excluded from the LCA models and the 5% threshold prescribed by the PCR was not exceeded.
Data Sources & Quality:

When primary data was unavailable, data was taken from either thinkstep, ecoinvent, or CEPE’s coating industry life cycle inventory. The data from thinkstep and ecoinvent are widely accepted by the LCA community and the CEPE database has been built using those databases as a foundation. A brief description of these databases is below:

Table 4. Overview of Databases used in LCA Models.

<table>
<thead>
<tr>
<th>Database</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sherwin-Williams</td>
<td>Primary source data taken as an average monthly value over a 12-month average of 2019 relevant facilities operation metrics.</td>
</tr>
<tr>
<td>thinkstep/GaBi</td>
<td>DB Version 6.110</td>
</tr>
<tr>
<td>ecoinvent</td>
<td>Version 3.3 – Most recent version available in GaBi.</td>
</tr>
<tr>
<td>CEPE LCI</td>
<td>Most recent version of industry LCI. Last revised this year. Made up of refined data from thinkstep and ecoinvent so that it is more representative of coating manufacturing. Primarily limited to EU data, although some processes are global.</td>
</tr>
</tbody>
</table>

Precision and Completeness:

Annual averages from the 2019 calendar year of primary data was used for all gate-gate processes and the most representative inventories were selected for all processes outside of Sherwin-Williams’ direct operational control. Secondary data was primarily drawn from the most recent GaBi and ecoinvent databases and CEPE’s coating life cycle inventory. All of these databases were assessed in terms of overall completeness.

Assumptions relating to application and disposal were conformant with the reference PCR. All data used in the LCA models was less than five years old. Pigment and resin data were taken from both ecoinvent v3.3 and GaBi databases.

Consistency and Reproducibility:

In order to ensure consistency, primary source data was used for all gate-to-gate processes in coating manufacturing. All other secondary data were applied consistently and any modifications to the databases were documented in the LCA Report.

This assessment was completed using an EPD calculator tool that has been externally verified by NSF International. This tool was not altered in any way from its original and verified form to generate the LCA results described in this EPD, and the results from the calculator were translated into the EPD by hand. Reproducibility is possible using the verified EPD Calculator tool or by reproducing the LCIs documented in the LCA Report.

Temporal Coverage:

Primary data was collected from the manufacturing facilities from the 2019 calendar year. Secondary data reflected the most up-do-date versions of the LCA databases mentioned above.
Geographic Coverage:

Firetex FX9500 is manufactured by the Sherwin-Williams Company in facilities across the globe. Given this, the average US grid mix was used in the LCA models to be conservative. Firetex FX9500 products are purchased, used, and the unused portions are disposed by the customer globally as well.
Life Cycle Impact Assessment:

The purpose of the Life Cycle Impact Assessment (LCIA) is to show the link between the life cycle inventory results and potential environmental impacts. As such, these results are classified and characterized into several impact categories which are listed and described below. The CML method was used and the LCIA results are formatted to be conformant with the PCR, which was based on ISO 21930. The CML method is widely accepted for use in Europe.

Table 5. Overview of Impact Categories

<table>
<thead>
<tr>
<th>Overview of LCA Impact Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact Category Name</td>
</tr>
<tr>
<td>Global Warming Potential</td>
</tr>
<tr>
<td>Ozone Depletion Potential</td>
</tr>
<tr>
<td>Acidification Potential</td>
</tr>
<tr>
<td>Smog Formation Potential</td>
</tr>
<tr>
<td>Eutrophication Potential</td>
</tr>
</tbody>
</table>
Life Cycle Impact Assessment Results:

The LCA results are documented and grouped separately below into the following stages as defined by ISO 21930.

- Total Impact (across the entire cradle-grave lifecycle including tinting)
- Product Stage (Stage 1)
- Construction & Design Stage (Stage 2)
- Use & Maintenance Stage (Stage 3)
- End-Of-Life Stage (Stage 4)

No weighting or normalization was done to the results. At this time, it is not recommended to weight the results of the LCA or the subsequent EPD. It is important to remember that LCA results show potential and expected impacts and these should not be used as firm thresholds/indicators of safety and/or risk. As with all scientific processes, there is uncertainty within the calculation and measurement of all impact categories and care should be taken when interpreting the results.

Results:

The results of the LCA are shown in the tables below. LCIA results for each life cycle stage as defined by ISO 21930 are shown graphically in Figure 2.

Table 6. LCA Results Using Market Service Life.

<table>
<thead>
<tr>
<th></th>
<th>B59W09500</th>
<th>B59V09500</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWP Inc Bio Carb (kg CO2 e)</td>
<td>16.86</td>
<td>8.95</td>
</tr>
<tr>
<td>GWP Exc Bio Carb (kg CO2 e)</td>
<td>16.86</td>
<td>8.95</td>
</tr>
<tr>
<td>Acidification (kg SO2 e)</td>
<td>0.10</td>
<td>0.04</td>
</tr>
<tr>
<td>Eutrophication (kg Phosphate e)</td>
<td>9.83E-03</td>
<td>9.05E-03</td>
</tr>
<tr>
<td>Ozone Depletion (kg R11 e)</td>
<td>1.24E-07</td>
<td>4.91E-07</td>
</tr>
<tr>
<td>Smog Formation (kg Ethene e)</td>
<td>2.33</td>
<td>2.08</td>
</tr>
</tbody>
</table>
Figure 2. Impact Category Result Breakdown by ISO 21930 Stage.

<table>
<thead>
<tr>
<th>(TECHNICAL LIFE)</th>
<th>TOTAL</th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
<th>Stage 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Renew. Energy (MJ)</td>
<td>324.39</td>
<td>270.82</td>
<td>51.75</td>
<td>0.02</td>
<td>1.80</td>
</tr>
<tr>
<td>Use of Renewable Primary Energy (MJ)</td>
<td>7.92</td>
<td>6.61</td>
<td>1.26</td>
<td>0.00</td>
<td>0.04</td>
</tr>
<tr>
<td>Use of Non-Renew Mat. Resources (kg)</td>
<td>14.85</td>
<td>12.40</td>
<td>2.37</td>
<td>0.00</td>
<td>0.08</td>
</tr>
<tr>
<td>Use of Renewable Mat. Resources (kg)</td>
<td>15015.00</td>
<td>12535.53</td>
<td>2395.49</td>
<td>0.83</td>
<td>83.15</td>
</tr>
<tr>
<td>Consumption of Freshwater (m3)</td>
<td>13.56</td>
<td>11.32</td>
<td>2.16</td>
<td>0.00</td>
<td>0.08</td>
</tr>
<tr>
<td>Hydro Power (MJ)</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Bio Energy (MJ)</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Fossil Energy (MJ)</td>
<td>307.56</td>
<td>256.77</td>
<td>49.07</td>
<td>0.02</td>
<td>1.70</td>
</tr>
<tr>
<td>Nuclear Energy (MJ)</td>
<td>16.83</td>
<td>14.05</td>
<td>2.69</td>
<td>0.00</td>
<td>0.09</td>
</tr>
<tr>
<td>Other Energy (MJ)</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Secondary Fuels (MJ)</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Recycled Materials (kg)</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Secondary Raw Materials (kg)</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Non-Hazardous Waste</td>
<td>68.75%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Hazardous Waste</td>
<td>31.25%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Interpretation:

For Firetex, the raw materials were responsible for the largest environmental impact across all impact categories, except smog formation potential. Specifically, the pigments and resins were the most impactful raw materials. Manufacturing, packaging, use, and disposal were only responsible for a small percent of overall impact. Transportation impacts were significant for several impact categories, but still much smaller than those of the raw materials. Because this product contains some VOC, this led to a spike in smog formation during the use phase.

Since the raw materials were responsible for the largest chunk of the impact, product performance and durability were especially important. Generally speaking, the longer a coating lasts, the better its environmental performance will be.

Study Completeness:

Completeness estimates are somewhat subjective as it is impossible for any LCA or inventory to be 100% complete. However, based on expert judgment, it is believed that given the overall data quality that the study is at least 95% complete. As such, at least 95% of system mass, energy, and environmental relevance were covered.

Uncertainty:

Because a large number of data sets are linked together in the LCA models, it is unknown how many of the data sets have goals that are dissimilar to this LCA. As such, it is difficult to estimate overall uncertainty of the LCA models. However, primary source data was used whenever possible and the most appropriate secondary data sources were used throughout the models. The thinkstep and ecoinvent databases are widely accepted by the LCA community and CEPE’s LCI Database is based off thinkstep and ecoinvent data, just optimized/corrected for coating manufacturing processes.

Since the reference PCR stipulated the majority of the crucial LCA assumptions, Sherwin-Williams is comfortable with the methodology of the LCA and feel they reflect best-practices.

Limitations:

LCA is not a perfect tool for comparisons and impact values are constantly changing due to shifts in the grid mix, transportation, fuels, etc. Because of this, care should be taken when applying or interpreting these results. This being said, the relative impacts between products should be more reliable and less sensitive versus the specific impact category and metric values.

As stated in the LCA report, there were cases where analogue chemicals had to be used in the LCA models. This occurred when no LCI data was available for an intermediate chemical/material. This was typically limited to additives representing a very small amount of the overall formula (less than a percent), but still may impact the results. Likewise, there were cases where data had to be used from a different region or technology. These instances were uncommon and noted in the Data Quality section of the LCA Report and were not expected to have a serious effect on the results, but still may limit the study.
Emissions to Water, Soil, and to Indoor Air:

VOC determination was done using the federally accepted methods outlined by the EPA in the Federal Register. Additional information on VOCs can be found on the environmental data sheets for the specific formula on www.sherwin.com.

Critical Review:

Since the goal of the LCA was to generate an EPD, it was submitted for review by NSF International. NSF commissioned Mr. Jack Geibig of EcoForm to conduct the formal review of the LCA report.
Additional Environmental Information:

<table>
<thead>
<tr>
<th>VOC Content</th>
<th>Determined by EPA VOC Regulatory Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td><150 g/L</td>
<td></td>
</tr>
</tbody>
</table>

Preferred End-of Life Options for Firetex:

Unused product should be taken to an appropriate waste disposal center. See product label for details. Never place unused product down any indoor or outdoor drain.
References:

ISO 14025:2006 Environmental labels and declarations – Type III environmental declarations – Principles and procedures.

PaintCare - http://www.paintcare.org/

© 2020 The Sherwin-Williams Company