RUBEROID[®] & Tri-Ply[®] APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane Installation: Torch Applied

Founded in 1886, GAF is the leading roofing manufacturer in North America. As a member of the Standard Industries family of companies, GAF is part of the largest roofing and waterproofing business in the world. The company's products include a comprehensive portfolio of roofing and waterproofing solutions for residential and commercial properties as well as for civil engineering applications. The full GAF portfolio of solutions is supported by an extensive national network of factory-certified contractors. GAF continues to be the leader in quality and offers comprehensive warranty protection on its products and systems. The company's success is driven by a commitment to empowering its people to deliver advanced quality and purposeful innovation. For more information about GAF, visit www.gaf.com.

A resilient and durable Modified Bitumen Roofing Membrane for use in multiply roofing assemblies.

RUBEROID[®] & Tri-Ply[®] APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane APP-Modified Bitumen Roofing

This declaration is an environmental product declaration (EPD) in accordance with ISO 14025 and ISO 21930-2017. EPDs rely on Life Cycle Assessment (LCA) to provide information on a number of environmental impacts of products over their life cycle. Exclusions: EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace tools and certifications that are designed to address these impacts and/or set performance thresholds - e.g., Type 1 certifications, health assessments and declarations, environmental impact assessments, etc. Accuracy of Results: EPDs regularly rely on estimations of impacts, and the level of accuracy in estimation of effect differs for any particular product line and reported impact. Comparability: EPDs are not comparative assertions and are either not comparable or have limited comparability when they cover different life cycle stages, are based on different product category rules or are missing relevant environmental impacts. EPDs from different programs may not be comparable.

EPD PROGRAM AND PROGRAM OPERATOR NAME, ADDRESS, LOGO, AND WEBSITE	NSF International, 789 N. Dixboro Rd, Ann Arbor, MI 48105, www.nsf.org			
GENERAL PROGRAM INSTRUCTIONS AND VERSION NUMBER	NSF Certification Policies for Environmental Product Declarations (EPD): November 1, 2022			
MANUFACTURER NAME AND ADDRESS	GAF 1 Campus Drive, Parsippany, NJ 07054			
DECLARATION NUMBER	EPD11027	EPD11027		
DECLARED PRODUCT & DECLARED UNIT	RUBEROID® & Tri-Ply® APP (A Declared Unit = 1 m ²	tactic Polypropylene) - Modified Bitumen Roofing Membrane		
REFERENCE PCR AND VERSION NUMBER	UL PCR B: Asphalt Shingles, Bu Membrane Roofing EPD Require Valid through July 1, 2025	ilt-up Asphalt Membrane Roofing and Modified Bituminous ements		
DESCRIPTION OF PRODUCT APPLICATION/USE	APP-Modified Bitumen Roofing			
PRODUCT RSL DESCRIPTION	N/A			
MARKETS OF APPLICABILITY	Global			
DATE OF ISSUE	July 21, 2025			
PERIOD OF VALIDITY	7/21/2025 to 7/21/2030			
EPD TYPE	Product Specific			
DATASET VARIABILITY	N/A			
EPD SCOPE	Cradle-to-Gate withoptions			
YEAR(S) OF REPORTED PRIMARY DATA	2021			
LCA SOFTWARE & VERSION NUMBER	LCA for Experts v. 10.6 GAF EPD Generator Tool Versio	on 1.0		
LCI DATABASE(S) & VERSION NUMBER	Sphera database & USLCI v2.0			
LCIA METHODOLOGY & VERSION NUMBER	TRACI 2.1: CML 4.1			
The sub-category PCR review was conducted by:		Tom Gloria, Industrial Ecology Consultants t.gloria@industrial-ecology.com		
This declaration was independently verified in accordance with ISO 14025: 2006. The UL Environment "Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Project Report," v3.2 (Dec 2018), based on ISO 21930:2017, serves as the core PCR, with additional considerations from the USGBC/UL Environment Part A Enhancement (2017)		Jack Geibig, EcoForm, LLC jgeibig@ecoform.com		
PCR by:	in 150 14044 and the reference	Sustainable Solutions Corporation		
This life cycle assessment was independently verified in act reference PCR by:	cordance with ISO 14044 and the	Jack Geibig, EcoForm, LLC jgeibig@ecoform.com		
Environmental declarations from different programs (ISO 14035) may not be compared	1-	•		

Comparison of the environmental performance using EPD information shall consider all relevant information modules over the full life cycle of the products within the building.

This PCR allows EPD comparability only when the same functional requirements between products are ensured and the requirements of ISO 21930:2017 §5.5 are met. It should be noted that different LCA software and background LCI ts may lead to differences results for upstream or downstream of the life cycle stages declared

RUBEROID® & Tri-Ply® APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane

APP-Modified Bitumen Roofing

GAF

General Information

Description of Company/Organization

Founded in 1886, GAF is the leading roofing manufacturer in North America. As a member of the Standard Industries family of companies, GAF is part of the largest roofing and waterproofing business in the world. The company's products include a comprehensive portfolio of roofing and waterproofing solutions for residential and commercial properties as well as for civil engineering applications. The full GAF portfolio of solutions is supported by an extensive national network of factory-certified contractors. GAF continues to be the leader in quality and offers comprehensive warranty protection on its products and systems. The company's success is driven by a commitment to empowering its people to deliver advanced quality and purposeful innovation. For more information about GAF, visit www.gaf.com.

Product Description

APP features asphalt that has been modified (modified bitumen) to include atactic polypropylene – a plastic polymer that allows the roofing membrane to protect against UV rays and weather events. APP is typically applied via a torch. Most APP systems consist of 2 membranes, one or more smooth base sheet(s) and a granulated cap sheet. Product included and covered within this EPD are: Tri-Ply® APP Smooth, RUBEROID® Torch Smooth, RUBEROID® EnergyCap[™] Torch Granule FR, RUBEROID® EnergyCap[™] Torch Plus Granule FR, RUBEROID® Torch Plus Granule FR, RUBEROID® Torch Granule, Tri-Ply® APP Granule

Flow Diagram

Manufacturer Specific EPD

This product-specific EPD was developed based on the cradle-to-gate with options (modules A1-A5, C1-C4) Life Cycle Assessment. The EPD accounts for raw material extraction and processing, transport, product manufacturing, distribution, installation, and disposal. Manufacturing data were gathered directly from company personnel. For any product group EPDs, an impact assessment was completed for each product. Product grouping was considered appropriate if the individual product impacts differed by no more than ±10% in any impact category.

Application

Torch Applied

RUBEROID[®] & Tri-Ply[®] APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane

APP-Modified Bitumen Roofing

Material Composition

The primary product components and/or materials must be indicated as a percentage mass to enable the user of the EPD to understand the composition of the product in delivery status.

The composition of all EnergyCap[™] APP-Modified Bitumen Roofing is as follows:

Category	Materials	Category %		
Polyester [APP]	Polyester	3-6%		
	Asphalt			
l f	Process Oil			
	Atactic Polypropylene			
CAPP-02 [APP]	Propylene Elastomer	40-55%		
	Isotactic Polypropylene			
	VLDPE			
1	Limestone or Talc			
Small Shaker Granules [APP]	Small Shaker Granules	10-20%		
Talc [APP]	Talc	0-10%		
PP/PE Film [APP]	Polypropylene or polyethylene	0.2-1%		
EnergyCap™ Granules [APP]	EnergyCap™ Granules	20-30%		
*The GAF product modelled in this stu	idy contains no substances that are required to be reported production	d as hazardous, nor are any such substances utilized in its		

The composition of all smooth non-EnergyCap[™] APP-Modified Bitumen Roofing is as follows:

Category	Materials	Category %		
Polyester [APP]	Polyester	3-6%		
	Asphalt			
Γ	Process Oil			
Γ	Atactic Polypropylene			
CAPP-02 [APP]	Propylene Elastomer	55-70%		
Γ	Isotactic Polypropylene			
	VLDPE			
Γ	Limestone or Talc			
Small Shaker Granules [APP]	Small Shaker Granules	15-30%		
Talc [APP]	Talc	0-10%		
PP/PE Film [APP]	Polypropylene or polyethylene	0.2-1%		
EnergyCap™ Granules [APP]	EnergyCap™ Granules	0-2%		
*The GAF product modelled in this stud	y contains no substances that are required to be reported production	ed as hazardous, nor are any such substances utilized in its		

The composition of all granule non-EnergyCap[™] APP-Modified Bitumen Roofing is as follows:

Category	Materials	Category %		
Polyester [APP]	Polyester	3-6%		
	Asphalt			
	Process Oil			
F	Atactic Polypropylene			
CAPP-02 [APP]	Propylene Elastomer	40-55%		
	Isotactic Polypropylene			
Ē	VLDPE			
Ē	Limestone or Talc			
Small Shaker Granules [APP]	Small Shaker Granules	10-20%		
Talc [APP]	Talc	20-40%		
PP/PE Film [APP]	Polypropylene or polyethylene	0.2-0.5%		
EnergyCap™ Granules [APP]	EnergyCap™ Granules	0-5%		
*The GAF product modelled in this stud	ly contains no substances that are required to be reporte production	d as hazardous, nor are any such substances utilized in its		

 $\label{eq:RUBEROID} {\rm ^{\otimes}}\ \&\ Tri-Ply^{\rm ^{\otimes}}\ APP\ (Atactic\ Polypropylene)\ -\ Modified\ Bitumen\ Roofing\ Membrane\ APP-Modified\ Bitumen\ Roofing$

Technical Data

The appropriate ASTM or CSA product specification shall be provided, including additional pertinent physical properties and technical information.

APP Base Sheet (ASTM D6222,TI, Grade S)	Standard Minimum Value	GAF Value: Tri-Ply [®] APP Smooth		
Thickness, min, mm [mils], Grade S	3.5 (140)	4.0 (160)		
Peak load at 23 +/- 2°C [73.4 +/- 3.6°F] MD and XMD, before and after heat conditioning, kN/m [lbf/in.], minimum	8.8 (50.0)	14.9 (85.3)		
Elongation at 23 +/- 2°C [73.4 +/- 3.6°F] MD and XMD, before and after heat conditioning, at peak load, % minimum	23	45		
Peak load at –18 +/- 2°C [0 +/- 3.6°F] MD and XMD, kN/m [lbf/in.], minimum	10.5 (60)	18.4 (105)		
Elongation at –18 +/- 2°C [0 +/- 3.6°F] MD and XMD, at peak load, % minimum	10	20		
Ultimate elongation at 23 +/- 2°C [73.4 +/- 3.6°F], MD and XMD, % minimum	30	50		
Tear strength at 23 +/- 2°C [73.4 +/- 3.6°F] N [lbf], minimum	311 (70)	511 (115)		
Low temperature flexibility, before and after heat conditioning, °C [°F], maximum	+0 (32)	-10 (14)		
Dimensional stability, % change, maximum	1	0.4		
Compound stability, °C [°F] minimum	110 (230)	130 (266)		
Water absorption, % maximum	3.2	2.5		
Moisture content, % maximum	1.0	> 1.0		
Low temperature unrolling, °C [°F], maximum	5 (41)	-10 (14)		
Net mass per unit area, min., g/m2[lbs/100 ft2]	3,418 (70)	3,515 (72)		
Bottom side coating thickness, min, mm [mils],	0.76 (30)	0.79 (31)		

APP Base Sheet (ASTM D6222,TI, Grade S)	Standard Minimum Value	GAF Value: RUBEROID [®] Torch Smooth		
Thickness, min, mm [mils], Grade S	3.5 (140)	4.0 (160)		
Peak load at 23 +/- 2°C [73.4 +/- 3.6°F] MD and XMD, before and after heat conditioning, kN/m [lbf/in.], minimum	8.8 (50.0)	14.9 (85.3)		
Elongation at 23 +/- 2°C [73.4 +/- 3.6°F] MD and XMD, before and after heat conditioning, at peak load, % minimum	23	45		
Peak load at –18 +/- 2°C [0 +/- 3.6°F] MD and XMD, kN/m [lbf/in.], minimum	10.5 (60)	18.4 (105)		
Elongation at –18 +/- 2°C [0 +/- 3.6°F] MD and XMD, at peak load, % minimum	10	20		
Ultimate elongation at 23 +/- 2°C [73.4 +/- 3.6°F], MD and XMD, % minimum	30	50		
Tear strength at 23 +/- 2°C [73.4 +/- 3.6°F] N [lbf], minimum	311 (70)	511 (115)		
Low temperature flexibility, before and after heat conditioning, °C [°F], maximum	+0 (32)	-10 (14)		
Dimensional stability, % change, maximum	1	0.4		
Compound stability, °C [°F] minimum	110 (230)	130 (266)		
Water absorption, % maximum	3.2	2.5		
Moisture content, % maximum	1.0	> 1.0		
Low temperature unrolling, °C [°F], maximum	5 (41)	-10 (14)		
Net mass per unit area, min., g/m2[lbs/100 ft2]	3,418 (70)	3,515 (72)		
Bottom side coating thickness, min, mm [mils],	0.76 (30)	0.79 (31)		

 $\label{eq:RUBEROID} {\rm ^{\odot}~\&~Tri-Ply^{\odot}~APP}~({\rm Atactic~Polypropylene}) - {\rm Modified~Bitumen~Roofing~Membrane} \\ {\rm APP-Modified~Bitumen~Roofing} \\$

APP Cap Sheet (ASTM D6222, TI, Grade G)	Standard Minimum Value	GAF Value: RUBEROID® EnergyCap™ Torch Granule FR
Thickness, min, mm [mils], Grade G	4.0 (160)	4.0 (160)
Peak load at 23 +/- 2°C [73.4 +/- 3.6°F] MD and XMD, before and after heat conditioning, kN/m [lbf/in.], minimum	8.8 (50)	14.0 (80)
Elongation at 23 +/- 2°C [73.4 +/- 3.6°F] MD and XMD, before and after heat conditioning, at peak load, % minimum	23	42
Peak load at –18 +/- 2°C [0 +/- 3.6°F] MD and XMD, kN/m [lbf/in.], minimum	10.5 (60)	16.6 (95)
Elongation at –18 +/- 2°C [0 +/- 3.6°F] MD and XMD, at peak load, % minimum	10	30
Ultimate elongation at 23 +/- 2°C [73.4 +/- 3.6°F], MD and XMD, % minimum	30	48
Tear strength at 23 +/- 2°C [73.4 +/- 3.6°F] N [lbf], minimum	311 (70)	467 (105)
Low temperature flexibility, before and after heat conditioning, °C [°F], maximum	+0 (32)	-10 (14)
Dimensional stability, % change, maximum	1.00	0.42
Compound stability, °C [°F] minimum	110 (230)	130 (266)
Granule embedment, maximum loss, grams (Grade G Only)	2.0	0.5
Water absorption, % maximum	3.2	2.8
Moisture content, % maximum	1.0	>1.0
Low temperature unrolling, °C [°F], maximum	5 (41)	-10 (14)
Net mass per unit area, min., g/m2[lbs/100 ft2]	4,150 (85)	4,185 (86)
Bottom side coating thickness, min, mm [mils],	0.76 (30)	.78 (31)

APP Cap Sheet (ASTM D6222, TII, Grade G)	Standard Minimum Value	GAF Value: RUBEROID® EnergyCap™ Torch Plus Granule FR		
Thickness, min, mm [mils], Grade G	4.0 (160)	4.5 (175)		
Peak load at 23 +/- 2°C [73.4 +/- 3.6°F] MD and XMD, before and after heat conditioning, kN/m [lbf/in.], minimum	8.8 (50)	14.0 (80)		
Elongation at 23 +/- 2° C [73.4 +/- 3.6° F] MD and XMD, before and after heat conditioning, at peak load, % minimum	23	45		
Peak load at –18 +/- 2°C [0 +/- 3.6°F] MD and XMD, kN/m [lbf/in.], minimum	10.5 (60)	16.6 (95)		
Elongation at –18 +/- 2°C [0 +/- 3.6°F] MD and XMD, at peak load, % minimum	10	30		
Ultimate elongation at 23 +/- 2°C [73.4 +/- 3.6°F], MD and XMD, % minimum	30	45		
Tear strength at 23 +/- 2°C [73.4 +/- 3.6°F] N [lbf], minimum	311 (70)	489 (110)		
Low temperature flexibility, before and after heat conditioning, °C [°F], maximum	+0 (32)	-10 (14)		
Dimensional stability, % change, maximum	1	0.44		
Compound stability, °C [°F] minimum	110 (230)	125 (257)		
Granule embedment, maximum loss, grams (Grade G Only)	2.00	0.25		
Water absorption, % maximum	3.2	2.9		
Moisture content, % maximum	1.0	<1.0		
Low temperature unrolling, °C [°F], maximum	5 (41)	-10 (14)		
Net mass per unit area, min., g/m2[lbs/100 ft2]	4,150 (85)	4,185 (86)		
Bottom side coating thickness, min, mm [mils],	0.76 (30)	0.78 (31)		

 $\label{eq:RUBEROID} {\rm ^{\otimes}}\ \&\ Tri-Ply^{\rm ^{\otimes}}\ APP\ (Atactic\ Polypropylene)\ -\ Modified\ Bitumen\ Roofing\ Membrane\ APP-Modified\ Bitumen\ Roofing$

APP Cap Sheet (ASTM D6222, TII, Grade G)	Standard Minimum Value	GAF Value: RUBEROID [®] Torch Plus Granule FR		
Thickness, min, mm [mils], Grade G	4.0 (160)	4.5 (175)		
Peak load at 23 +/- 2°C [73.4 +/- 3.6°F] MD and XMD, before and after heat conditioning, kN/m [lbf/in.], minimum	8.8 (50)	17.9 (102)		
Elongation at 23 +/- 2°C [73.4 +/- 3.6°F] MD and XMD, before and after heat conditioning, at peak load, % minimum	23	45		
Peak load at –18 +/- 2°C [0 +/- 3.6°F] MD and XMD, kN/m [lbf/in.], minimum	10.5 (60)	22.8 (130)		
Elongation at –18 +/- 2°C [0 +/- 3.6°F] MD and XMD, at peak load, % minimum	10	42		
Ultimate elongation at 23 +/- 2°C [73.4 +/- 3.6°F], MD and XMD, % minimum	30	58		
Tear strength at 23 +/- 2°C [73.4 +/- 3.6°F] N [lbf], minimum	311 (70)	631 (142)		
Low temperature flexibility, before and after heat conditioning, °C [°F], maximum	+0 (32)	-10 (14)		
Dimensional stability, % change, maximum	1.00	0.42		
Compound stability, °C [°F] minimum	110 (230)	130 (266)		
Granule embedment, maximum loss, grams (Grade G Only)	2.0	1.4		
Water absorption, % maximum	3.2	3.1		
Moisture content, % maximum	1.0	>1.0		
Low temperature unrolling, °C [°F], maximum	5 (41)	-10 (14)		
Net mass per unit area, min., g/m2[lbs/100 ft2]	4,150 (85)	4,165 (85)		
Bottom side coating thickness, min, mm [mils],	0.76 (30)	0.77 (30)		

APP Cap Sheet (ASTM D6222, TI, Grade G)	Standard Minimum Value	GAF Value: RUBEROID [®] Torch Granule			
Thickness, min, mm [mils], Grade G	4.0 (160)	4.2 (165)			
Peak load at 23 +/- 2°C [73.4 +/- 3.6°F] MD and XMD, before and after heat conditioning, kN/m [lbf/in.], minimum	8.8 (50)	14.0 (80)			
Elongation at 23 +/- 2°C [73.4 +/- 3.6°F] MD and XMD, before and after heat conditioning, at peak load, % minimum	23	42			
Peak load at –18 +/- 2°C [0 +/- 3.6°F] MD and XMD, kN/m [lbf/in.], minimum	10.5 (60)	18.4 (105)			
Elongation at –18 +/- 2°C [0 +/- 3.6°F] MD and XMD, at peak load, % minimum	10	30			
Ultimate elongation at 23 +/- 2°C [73.4 +/- 3.6°F], MD and XMD, % minimum	30	45			
Tear strength at 23 +/- 2°C [73.4 +/- 3.6°F] N [lbf], minimum	311 (70)	467 (105)			
Low temperature flexibility, before and after heat conditioning, °C [°F], maximum	+0 (32)	-10 (14)			
Dimensional stability, % change, maximum	1.0	0.4			
Compound stability, °C [°F] minimum	110 (230)	130 (266)			
Granule embedment, maximum loss, grams (Grade G Only)	2.0	1.2			
Water absorption, % maximum	3.2	3.0			
Moisture content, % maximum	1.0	>1.0			
Low temperature unrolling, °C [°F], maximum	5 (41)	-10 (14)			
Net mass per unit area, min., g/m2[lbs/100 ft2]	4,150 (85)	4,162 (85)			
Bottom side coating thickness, min, mm [mils],	0.76 (30)	.78 (31)			

 $\label{eq:RUBEROID} {\rm ^{\odot}~\&~Tri-Ply^{\odot}~APP}~({\rm Atactic~Polypropylene}) - {\rm Modified~Bitumen~Roofing~Membrane} \\ {\rm APP-Modified~Bitumen~Roofing} \\$

APP Cap Sheet (ASTM D6222, TI, Grade G)	Standard Minimum Value	GAF Value: Tri-Ply [®] APP Granule		
Thickness, min, mm [mils], Grade G	4.0 (160)	4.2 (165)		
Peak load at 23 +/- 2°C [73.4 +/- 3.6°F] MD and XMD, before and after heat conditioning, kN/m [lbf/in.], minimum	8.8 (50)	14.0 (80)		
Elongation at 23 +/- 2°C [73.4 +/- 3.6°F] MD and XMD, before and after heat conditioning, at peak load, % minimum	23	42		
Peak load at –18 +/- 2°C [0 +/- 3.6°F] MD and XMD, kN/m [lbf/in.], minimum	10.5 (60)	18.4 (105)		
Elongation at –18 +/- 2°C [0 +/- 3.6°F] MD and XMD, at peak load, % minimum	10	30		
Ultimate elongation at 23 +/- 2°C [73.4 +/- 3.6°F], MD and XMD, % minimum	30	45		
Tear strength at 23 +/- 2°C [73.4 +/- 3.6°F] N [lbf], minimum	311 (70)	467 (105)		
Low temperature flexibility, before and after heat conditioning, °C [°F], maximum	+0 (32)	-10 (14)		
Dimensional stability, % change, maximum	1.0	0.4		
Compound stability, °C [°F] minimum	110 (230)	130 (266)		
Granule embedment, maximum loss, grams (Grade G Only)	2.0	1.2		
Water absorption, % maximum	3.2	3.0		
Moisture content, % maximum	1.0	>1.0		
Low temperature unrolling, °C [°F], maximum	5 (41)	-10 (14)		
Net mass per unit area, min., g/m2[lbs/100 ft2]	4,150 (85)	4,162 (85)		
Bottom side coating thickness, min, mm [mils],	0.76 (30)	.78 (31)		

 $\text{RUBEROID}^{\circledast}$ & Tri-Ply $^{\circledast}$ APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane

APP-Modified Bitumen Roofing

Placing on the Market / Application Rules

GAF

The standards that can be applied for GAF APP membranes are: - ASTM D6222

Properties of Declared Product as Shipped

After manufacturing, the product is prepared for shipment to the customer. The membrane is reeled and occasionally a cardboard core is placed inside the center of the roll and wrapped in plastic film tapes at the top and bottom of the roll. Additional packaging materials include product labels, a cardboard protective sheet, steel strap and plastic pallet shroud is placed over the finished rolls. The product is then shipped on wooden pallets to the customer.

Methodological Framework

Declared Unit

The declaration refers to the declared unit of 1 m² as specified in the PCR.

Name	Tri-Ply [®] APP Smooth	RUBEROID [®] Torch Smooth	RUBEROID [®] EnergyCap™ Torch Granule FR	RUBEROID [®] EnergyCap™ Torch Plus Granule FR	RUBEROID [®] Torch Plus Granule FR	RUBEROID [®] Torch Granule	Tri-Ply [®] APP Granule	Unit
Declared unit		1 m²						
Weight per declared unit	3.81	3.81	4.88	5.09	4.88	4.65	4.65	kg
Thickness to achieve Declared Unit				60				mm

System Boundary

This is a cradle-to-gate withoptions Environmental Product Declaration. The following life cycle phases were considered:

Pro	oduct S	tage	Con Proc	struction ess Stage	Use Stage End-of-Life Stage*					9*	Benefits and Loads Beyond the System Boundaries					
Raw material supply	Transport	Manufacturing	Transport from gate to the site	Construction/ installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction /demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Х	Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	Х	Х	Х	Х	MND

Description of the System Boundary Stages Corresponding to the PCR

(X = Included; MND = Module Not Declared)

*This includes provision of all materials, products and energy, packaging processing and its transport, as well as waste processing up to the end-of waste state or disposal of final residues.

Reference Service Life

The reference service life of GAF is not declared due to the exclusion of the use-phase.

RUBEROID® & Tri-Ply® APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane

Allocation

The various plants produce a variety of products with differing impacts, so allocation was conducted based on total production mass of the different products. All data from these facilities are primary data and they were collected from facility personnel.

To produce roofing products, energy, water and materials go into the process and waste and emissions are outputs from the manufacturing process. The facility data were allocated by mass (methodology confirmed by site personnel) to determine benchmarked values of manufacturing requirements per unit mass or product. These benchmarked values were averaged for products made at multiple facilities using total production by mass.

Cut-off Criteria

Processes whose total contribution to the final result, with respect to their mass and in relation to all considered impact categories, is less than 1% can be neglected. Energy flows shall be included if they exceed 1 % of renewable primary resource (energy), 1 % nonrenewable primary resource (energy) usage, and 1 % of environmental impacts. The sum of the neglected processes may not exceed 5% by mass, 5% by energy, and 5% by total environmental impact of the considered impact categories. For that a documented assumption is admissible. All future products evaluated in the tool will at a minimum meet this requirement. Inputs to and outputs from the system after 100 years from 2021 shall not be considered in this study. Emissions from landfills 100 years after the product is disposed of will not be considered in this study. No known energy or environmental flows are excluded from the system analysis.

For Hazardous Substances, as defined by the US Occupational Health and Safety Act, the following requirements apply:

The Life Cycle Inventory (LCI) of hazardous substances will be included if the inventory is available.

• If the LCI for a hazardous substance is not available, the substance will appear as an input in the LCI of the product if its mass represents more than 0.1% of the product composition.

• If the LCI of a hazardous substance is approximated by modeling another substance, documentation will be provided.

This EPD is in compliance with the cut-off criteria. No processes were neglected or excluded. Capital items for the production processes (machine, buildings, etc.) were not taken into consideration.

Data Sources

Primary data were collected for every process in the product system under the control of GAF. Secondary data from the Sphera and USLCI databases were utilized when necessary. These data were evaluated and have temporal, geographic, and technical coverage appropriate to the scope of the product category. When a material is not available in the available LCI databases, another chemical which has similar manufacturing and environmental impacts may be used as a proxy, representing the actual chemical.

Data Quality

The data sources used are complete and representative of global systems in terms of the geographic and technological coverage and are a recent vintage (i.e., less than ten years old). The data used for primary data are based on direct information sources of the manufacturers. Secondary data sets were used for raw materials extraction and processing, end of life, transportation, and energy production flows. Wherever secondary data is used, the study adopts critically reviewed data for consistency, precision, and reproducibility to limit uncertainty. Please see Appendix A of the LCA report for the full breakdown of the data sources. The primary data from the manufacturer was from the latest data available. Each secondary dataset used was taken from LCA for Experts v. 10.6 databases, either US LCI or Sphera. These databases are widely distributed and referenced within the LCA community and are either partially or fully critically reviewed. Each material has an overall rating from one to four, one being "very good" and four being "poor." The data has an overall average rating of 2.0.

 $\label{eq:RUBEROID} {\rm Bitumen\ Roofing\ Membrane}\ APP-Modified\ Bitumen\ Roofing\ Membrane}\ APP-Modified\ Bitumen\ Roofing\ Membrane}$

Period Under Review

The period under review is the full calendar year of 2021.

Treatment of Biogenic Carbon

The uptake and release of biogenic carbon throughout the product life cycle follows ISO 21930:2017 Section 7.2.7.

Comparability and Benchmarking

A comparison or an evaluation of EPD data is only possible if all data sets to be compared were created according to ISO 21930 and the building context, respectively the product-specific characteristics of performance, are taken into account. Comparison of the environmental performance of asphalt shingles using EPD information shall be based on the product's use and impacts at the building level, and therefore EPDs may not be used for comparability purposes when not considering the building energy use phase as instructed under this PCR. Environmental declarations from different programs may not be comparable. Full conformance with the PCR allows for EPD comparability only when all stages a product's life cycle have been considered. However, variations and deviations are possible. In order to support comparative assertions, this EPD meets all comparability requirements stated in ISO 14025:2006. However, differenced in certain assumptions, data quality, and variability between LCA data sets may still exist. As such, caution should be exercised when evaluating EPDs from different manufacturers as the EPD results may.

Assumptions

• All products manufactured at each facility were assumed to have similar processing and thus allocation by mass was deemed appropriate.

- Allocation of inputs and outputs between facilities was calculated based on total production of roofing products in the 2021 calendar year.
- Waste streams that were identified as usable secondary material (i.e. materials for recycling) were considered waste with no allocation of burden to the product system.
- Fuel transportation distance was assumed to be 100 km.
- · Waste transportation distance was assumed to be 32 km.
- · End-of-life transportation was assumed to be 161 km.

Limitations

The findings in this research are limited by the inherent uncertainty of creating a representative model through LCA. Many assumptions were made in modeling the product system with representative processes and datasets. The authors addressed the uncertainty in modeling decisions by conducting a mass balance and sensitivity analysis as the LCI model was being constructed (data verification/validation relative to cut-off criteria and study goals).

There exists limitation within the secondary data used for the material processes. These limitations include technological process similarities, regional applicability, necessity for chemical proxies, etc.

While quality control was undertaken at each step in building the LCI and conducting the LCIA, uncertainty is still present in the results since the data evaluated represents only one year of manufacturing information. Detailed evaluation of multiple manufacturing plants and time periods would reduce the uncertainty. Some level of uncertainty is inherent in conducting LCA and decision making must reflect this fact.

Units

The LCA results within this EPD are reported in SI units.

 $\label{eq:RUBEROID} {\rm Bitumen\ Roofing\ Membrane}\ APP-Modified\ Bitumen\ Roofing\ Membrane}\ APP-Modified\ Bitumen\ Roofing\ Membrane}$

Technical Information

Background data

For life cycle modeling of the considered products, the LCA for Experts Software System for Life Cycle Engineering, developed by Sphera, is used. The Sphera and USLCI databases contain consistent and documented datasets which are documented online. To ensure comparability of results in the LCA, the basic data of the Sphera database were used for energy, transportation, and auxiliary materials.

Manufacturing

APP-Modified Bitumen Roofing is manufactured in Arkadelphia, Arkansas; Mount Vernon, Indiana; Savannah, Georgia; Stockton, California. Manufacturing begins with the inbound reception of raw materials. The process begins with adding coating inputs, such as asphalt and minerals, to a mixer. The inputs are mixed and then impregnated and/or coat an underlayment, such as a polyester mat. Mineral granules may be added to the top surface of the product. The product is then cooled, wound into rolls or cut to size, and packaged for shipment.

Below is a list of each of the manufacturing facilities that produce the product type listed. The manufacturing inputs from each of these facilities were averaged using total production of the given product type.

Product Type	Manufacturing location					
APP	Arkadelphia, Mount Vernon, Savannah, Stockton					

RUBEROID[®] & Tri-Ply[®] APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane APP-Modified Bitumen Roofing

Packaging

The packaging material is composed primarily of wood materials. Asphalt roofing products are shipped on pallets and wrapped in plastic film.

	Quantity (% By Weight)
Material	Value
Cardboard	1.02%
Wood	29.32%
Paper	2.31%
Plastic	67.35%
Total	100.00%

The assumed percent of disposal by packaging material type is listed below.

Material	Landfill Percent	Recycled Percent	Incineration Percent
Cardboard/Paper	20%	75%	5%
Wood	20%	75%	5%
Plastic	68%	17%	15%

Transportation

The default distance of 800 km for product transportation was not used. Instead, primary data was used to determine the distribution distance for this product.

Transport to Building Site (A4)								
Name	Value	Unit						
Fuel type	Die	esel						
Vehicle Type	Truck	-						
Liters of fuel	38	l/100km						
Measured Transport distance	391	km						
Capacity utilization (including empty runs)	90	%						
Gross density of products transported	63.4-84.8	kg/m ³						
Weight of products transported	-	kg						
Volume of products transported	-	m ³						
Capacity utilization volume factor	-	-						

 $\textbf{RUBEROID}^{\otimes} \And \textbf{Tri-Ply}^{\otimes} \textbf{ APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane}$

APP-Modified Bitumen Roofing

Product Installation

Detailed installation instructions are provided online. Installation equipment is required though not included in the study as these are multi-use tools and the impacts per declared unit is considered negligible. Additionally, this study assumed no materials were required for installation. Note: Compliance with model building codes does not always ensure compliance with state or local building codes, which may be amended versions of these model codes. Always check with local building code officials to confirm compliance.

Installation Into the Building (A5)							
Name	Value	Unit					
Auxiliary materials	-	kg					
Water consumption	-	m³					
Other resources	-	kg					
Electricity consumption	-	kWh					
Other energy carriers	1	MJ					
Product loss per declared unit	-	kg					
Waste materials at construction site	0.28	kg					
Output substance (recycle)	-	kg					
Output substance (landfill)	3.81	kg					
Output substance (incineration)	-	kg					
Packaging waste (recycle)	0.10	kg					
Packaging waste (landfill)	0.15	kg					
Packaging waste (incineration)	0.04	kg					
Direct emissions to ambient air*, soil, and water	0.16	kg					
VOC emissions	-	μg/m3					

*CO2 emissions to air from disposal of packaging

Disposal

The product is assumed to be 100% landfilled in the end-of-life disposal, in accordance with the PCR.

End of life (C1-C4)		
Name	Value	Unit
Collected separately	0.00	kg
Collected as mixed construction waste	3.81-5.09	kg
Reuse	0.00	kg
Recycling	0.00	kg
Landfilling	3.81-4.88	kg
Incineration with energy recovery	0.00	kg
Energy conversion	-	%
Removals of biogenic carbon	-	kg

RUBEROID[®] & Tri-Ply[®] APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane APP-Modified Bitumen Roofing

LCA Results Tri-Ply APP Smooth

Notes on LCA Results:

*LCIA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks. *These six impact categories (those presented in the TRACI 2.1 Impact Assessment table below) are globally deemed mature enough to be included in Type III environmental declarations. Other categories are being developed and defined and LCA should continue making advances in their development, however the EPD users shall not use additional measures for comparative purposes.

According to

ISO 14025, ISO 14044,

and ISO 21930:2017

CΛ

Results shown below were calculated using TRACI 2.1 Methodology.

TRACI 2.1 Imp	RACI 2.1 Impact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4		
GWP	Global warming potential	kg CO ₂ -Eq.	3.07E+00	1.38E-01	2.17E-01	0.00E+00	5.68E-02	0.00E+00	1.25E+00		
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	7.26E-11	5.23E-12	8.21E-16	0.00E+00	2.15E-12	0.00E+00	3.93E-15		
AP	Acidification potential for air emissions	kg SO ₂ -Eq.	1.89E-02	8.30E-04	2.76E-04	0.00E+00	3.41E-04	0.00E+00	7.61E-03		
EP	Eutrophication potential	kg N-Eq.	7.07E-04	4.60E-05	6.16E-05	0.00E+00	1.89E-05	0.00E+00	2.54E-03		
SP	Smog formation potential	kg O ₃ -Eq.	1.47E-01	2.28E-02	3.39E-03	0.00E+00	9.40E-03	0.00E+00	2.12E-02		
FFD	Fossil Fuel Depletion	MJ-surplus	1.67E+01	2.44E-01	2.61E-01	0.00E+00	1.01E-01	0.00E+00	1.59E-01		

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results shown below were calculated using CML 2001 - April 2013 Methodology.

CML 4.1 Im	ML 4.1 Impact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4		
GWP	Global warming potential	kg CO ₂ -Eq.	2.99E+00	1.39E-01	2.38E-01	0.00E+00	5.70E-02	0.00E+00	1.75E+00		
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	7.36E-11	5.22E-12	4.85E-14	0.00E+00	2.15E-12	0.00E+00	2.32E-13		
AP	Acidification potential for air emissions	kg SO ₂ -Eq.	2.03E-02	6.82E-04	1.80E-04	0.00E+00	2.80E-04	0.00E+00	3.34E-03		
EP	Eutrophication potential	kg(PO ₄) ³ -Eq.	1.61E-03	1.21E-04	9.62E-05	0.00E+00	5.00E-05	0.00E+00	3.94E-03		
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg ethane-Eq.	2.15E-03	7.96E-05	3.14E-05	0.00E+00	3.28E-05	0.00E+00	9.06E-04		
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	3.10E-06	5.74E-11	2.29E-08	0.00E+00	2.36E-11	0.00E+00	2.64E-08		
ADPF	Abiotic depletion potential for fossil resources	MJ	1.46E+02	1.76E+00	1.83E+00	0.00E+00	7.25E-01	0.00E+00	1.19E+00		

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain the resource use throughout the life cycle of the product.

Resource Use											
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4		
RPR _E	Renewable primary energy as energy carrier	MJ	3.24E+00	0.00E+00	2.98E-02	0.00E+00	0.00E+00	0.00E+00	1.54E-01		
RPR_{M}	Renewable primary energy resources as material utilization	MJ	0.00E+00								
NRPR _E	Nonrenewable primary energy as energy carrier	MJ	1.49E+02	1.78E+00	1.85E+00	0.00E+00	7.32E-01	0.00E+00	1.23E+00		
NRPR _M	Nonrenewable primary energy as material utilization	MJ	0.00E+00								
SM	Use of secondary material	kg	0.00E+00								
RSF	Use of renewable secondary fuels	MJ	0.00E+00								
NRSF	Use of nonrenewable secondary fuels	MJ	0.00E+00								
RE	Energy recovered from disposed waste	MJ	0.00E+00								
FW	Use of net fresh water	m ³	6.62E-03	0.00E+00	2.22E-04	0.00E+00	0.00E+00	0.00E+00	3.48E-04		

RUBEROID[®] & Tri-Ply[®] APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane APP-Modified Bitumen Roofing

According to ISO 14025, ISO 14044, and ISO 21930:2017

Results below contain the output flows and wastes throughout the life cycle of the product.

Dutput Flows and Waste Categories											
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4		
HWD	Hazardous waste disposed	kg	1.73E-03	0.00E+00	2.72E-10	0.00E+00	0.00E+00	0.00E+00	3.06E-10		
NHWD	Non-hazardous waste disposed	kg	1.83E-01	0.00E+00	1.65E-01	0.00E+00	0.00E+00	0.00E+00	3.32E+00		
HLRW	High-level radioactive waste	kg	0.00E+00								
ILLRW	Intermediate- and low-level radioactive waste	kg	8.59E-04	0.00E+00	6.14E-06	0.00E+00	0.00E+00	0.00E+00	1.30E-05		
CRU	Components for re-use	kg	0.00E+00								
MR	Materials for recycling	kg	0.00E+00								
MER	Materials for energy recovery	kg	0.00E+00								
EE	Recovered energy exported from system	MJ	0.00E+00								

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain direct greenhouse gas emissions and removals throughout the life cycle of the product.

Carbon Emis	sions and Removals								
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
BCRP	Biogenic Carbon Removal from Product	kg CO ₂	0.00E+00						
BCEP	Biogenic Carbon Emissions from Product	kg CO ₂	0.00E+00						
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	1.63E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.00E+00	0.00E+00	1.63E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg $\rm CO_2$	0.00E+00						
CCE	Calcination Carbon Emissions	kg CO ₂	0.00E+00						
CCR	Carbonation Carbon Removal	kg CO ₂	0.00E+00						
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO ₂	0.00E+00						

 $\textbf{RUBEROID}^{\otimes} \And \textbf{Tri-Ply}^{\otimes} \textbf{ APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane}$

APP-Modified Bitumen Roofing

LCA Interpretation

The production life cycle stage (A1-A3) dominates the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with natural gas use in the manufacturing of the product. The asphalt coating raw material is a petroleum derivative, which creates upstream carbon emissions. Overall, the production of the product is significantly more energy intensive than any other stage. The end-of-life disposal stage (C4) has significant impact in global warming potential, acidification, and eutrophication due to the 100% landfill assumption. Also, third party verified ISO 14040/44 secondary LCI data sets contribute more than 67% of total impact to the impact categories shown above.

RUBEROID[®] & Tri-Ply[®] APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane

APP-Modified Bitumen Roofing

LCA Results RUBEROID[®] Torch Smooth

Notes on LCA Results:

*LCIA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks. *These six impact categories (those presented in the TRACI 2.1 Impact Assessment table below) are globally deemed mature enough to be included in Type III environmental declarations. Other categories are being developed and defined and LCA should continue making advances in their development, however the EPD users shall not use additional measures for comparative purposes.

According to

ISO 14025, ISO 14044,

and ISO 21930:2017

CΛ

Results shown below were calculated using TRACI 2.1 Methodology.

TRACI 2.1 Imp	pact Assessment								
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
GWP	Global warming potential	kg CO ₂ -Eq.	3.07E+00	1.38E-01	2.17E-01	0.00E+00	5.68E-02	0.00E+00	1.25E+00
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	7.26E-11	5.23E-12	8.21E-16	0.00E+00	2.15E-12	0.00E+00	3.93E-15
AP	Acidification potential for air emissions	kg SO ₂ -Eq.	1.89E-02	8.30E-04	2.76E-04	0.00E+00	3.41E-04	0.00E+00	7.61E-03
EP	Eutrophication potential	kg N-Eq.	7.07E-04	4.60E-05	6.16E-05	0.00E+00	1.89E-05	0.00E+00	2.54E-03
SP	Smog formation potential	kg O ₃ -Eq.	1.47E-01	2.28E-02	3.39E-03	0.00E+00	9.40E-03	0.00E+00	2.12E-02
FFD	Fossil Fuel Depletion	MJ-surplus	1.67E+01	2.44E-01	2.61E-01	0.00E+00	1.01E-01	0.00E+00	1.59E-01

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results shown below were calculated using CML 2001 - April 2013 Methodology.

CML 4.1 Im	pact Assessment								
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
GWP	Global warming potential	kg CO ₂ -Eq.	2.99E+00	1.39E-01	2.38E-01	0.00E+00	5.70E-02	0.00E+00	1.75E+00
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	7.36E-11	5.22E-12	4.85E-14	0.00E+00	2.15E-12	0.00E+00	2.32E-13
AP	Acidification potential for air emissions	kg SO ₂ -Eq.	2.03E-02	6.82E-04	1.80E-04	0.00E+00	2.80E-04	0.00E+00	3.34E-03
EP	Eutrophication potential	kg(PO ₄) ³ -Eq.	1.61E-03	1.21E-04	9.62E-05	0.00E+00	5.00E-05	0.00E+00	3.94E-03
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg ethane-Eq.	2.15E-03	7.96E-05	3.14E-05	0.00E+00	3.28E-05	0.00E+00	9.06E-04
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	3.10E-06	5.74E-11	2.29E-08	0.00E+00	2.36E-11	0.00E+00	2.64E-08
ADPF	Abiotic depletion potential for fossil resources	MJ	1.46E+02	1.76E+00	1.83E+00	0.00E+00	7.25E-01	0.00E+00	1.19E+00

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain the resource use throughout the life cycle of the product.

Resource Us	e								
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
RPR _E	Renewable primary energy as energy carrier	MJ	3.24E+00	0.00E+00	2.98E-02	0.00E+00	0.00E+00	0.00E+00	1.54E-01
RPR_{M}	Renewable primary energy resources as material utilization	MJ	0.00E+00						
NRPR _E	Nonrenewable primary energy as energy carrier	MJ	1.49E+02	1.78E+00	1.85E+00	0.00E+00	7.32E-01	0.00E+00	1.23E+00
NRPR _M	Nonrenewable primary energy as material utilization	MJ	0.00E+00						
SM	Use of secondary material	kg	0.00E+00						
RSF	Use of renewable secondary fuels	MJ	0.00E+00						
NRSF	Use of nonrenewable secondary fuels	MJ	0.00E+00						
RE	Energy recovered from disposed waste	MJ	0.00E+00						
FW	Use of net fresh water	m ³	6.62E-03	0.00E+00	2.22E-04	0.00E+00	0.00E+00	0.00E+00	3.48E-04

RUBEROID[®] & Tri-Ply[®] APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane APP-Modified Bitumen Roofing

According to ISO 14025, ISO 14044, and ISO 21930:2017

Results below contain the output flows and wastes throughout the life cycle of the product.

Output Flows	and Waste Categories								
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
HWD	Hazardous waste disposed	kg	1.73E-03	0.00E+00	2.72E-10	0.00E+00	0.00E+00	0.00E+00	3.06E-10
NHWD	Non-hazardous waste disposed	kg	1.83E-01	0.00E+00	1.65E-01	0.00E+00	0.00E+00	0.00E+00	3.32E+00
HLRW	High-level radioactive waste	kg	0.00E+00						
ILLRW	Intermediate- and low-level radioactive waste	kg	8.59E-04	0.00E+00	6.14E-06	0.00E+00	0.00E+00	0.00E+00	1.30E-05
CRU	Components for re-use	kg	0.00E+00						
MR	Materials for recycling	kg	0.00E+00						
MER	Materials for energy recovery	kg	0.00E+00						
EE	Recovered energy exported from system	MJ	0.00E+00						

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain direct greenhouse gas emissions and removals throughout the life cycle of the product.

Carbon Emis	sions and Removals								
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
BCRP	Biogenic Carbon Removal from Product	kg CO ₂	0.00E+00						
BCEP	Biogenic Carbon Emissions from Product	kg CO ₂	0.00E+00						
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	1.63E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.00E+00	0.00E+00	1.63E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg CO_2	0.00E+00						
CCE	Calcination Carbon Emissions	kg CO ₂	0.00E+00						
CCR	Carbonation Carbon Removal	kg CO ₂	0.00E+00						
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO ₂	0.00E+00						

 $\textbf{RUBEROID}^{\otimes} \And \textbf{Tri-Ply}^{\otimes} \textbf{ APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane}$

APP-Modified Bitumen Roofing

LCA Interpretation

The production life cycle stage (A1-A3) dominates the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with natural gas use in the manufacturing of the product. The asphalt coating raw material is a petroleum derivative, which creates upstream carbon emissions. Overall, the production of the product is significantly more energy intensive than any other stage. The end-of-life disposal stage (C4) has significant impact in global warming potential, acidification, and eutrophication due to the 100% landfill assumption. Also, third party verified ISO 14040/44 secondary LCI data sets contribute more than 67% of total impact to the impact categories shown above.

 $\textbf{RUBEROID}^{\circledast} \And \textbf{Tri-Ply}^{\circledast} \textbf{APP} (\textbf{Atactic Polypropylene}) - \textbf{Modified Bitumen Roofing Membrane}$

APP-Modified Bitumen Roofing

GAF

LCA Results RUBEROID[®] EnergyCap[™] Torch Granule FR

Notes on LCA Results:

*LCIA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks. *These six impact categories (those presented in the TRACI 2.1 Impact Assessment table below) are globally deemed mature enough to be included in Type III environmental declarations. Other categories are being developed and defined and LCA should continue making advances in their development, however the EPD users shall not use additional measures for comparative purposes.

Results shown below were calculated using TRACI 2.1 Methodology.

TRACI 2.1 Im	pact Assessment								
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
GWP	Global warming potential	kg CO ₂ -Eq.	3.66E+00	1.76E-01	2.17E-01	0.00E+00	7.27E-02	0.00E+00	1.59E+00
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	7.32E-11	6.67E-12	8.21E-16	0.00E+00	2.75E-12	0.00E+00	5.02E-15
AP	Acidification potential for air emissions	kg SO ₂ -Eq.	1.93E-02	1.06E-03	2.76E-04	0.00E+00	4.37E-04	0.00E+00	9.73E-03
EP	Eutrophication potential	kg N-Eq.	7.51E-04	5.86E-05	6.16E-05	0.00E+00	2.42E-05	0.00E+00	3.24E-03
SP	Smog formation potential	kg O ₃ -Eq.	1.52E-01	2.91E-02	3.39E-03	0.00E+00	1.20E-02	0.00E+00	2.71E-02
FFD	Fossil Fuel Depletion	MJ-surplus	1.80E+01	3.12E-01	2.61E-01	0.00E+00	1.29E-01	0.00E+00	2.04E-01

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results shown below were calculated using CML 2001 - April 2013 Methodology.

CML 4.1 Im	pact Assessment								
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
GWP	Global warming potential	kg CO ₂ -Eq.	3.60E+00	1.77E-01	2.38E-01	0.00E+00	7.29E-02	0.00E+00	2.23E+00
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	7.40E-11	6.65E-12	4.85E-14	0.00E+00	2.75E-12	0.00E+00	2.97E-13
AP	Acidification potential for air emissions	kg SO ₂ -Eq.	2.07E-02	8.69E-04	1.80E-04	0.00E+00	3.59E-04	0.00E+00	4.27E-03
EP	Eutrophication potential	kg(PO ₄) ³ -Eq.	1.70E-03	1.55E-04	9.62E-05	0.00E+00	6.39E-05	0.00E+00	5.04E-03
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg ethane-Eq.	2.22E-03	1.02E-04	3.14E-05	0.00E+00	4.19E-05	0.00E+00	1.16E-03
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	3.11E-06	7.32E-11	2.29E-08	0.00E+00	3.02E-11	0.00E+00	3.37E-08
ADPF	Abiotic depletion potential for fossil resources	MJ	1.56E+02	2.25E+00	1.83E+00	0.00E+00	9.27E-01	0.00E+00	1.52E+00

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain the resource use throughout the life cycle of the product.

Resource Us	e								
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
RPR _E	Renewable primary energy as energy carrier	MJ	1.47E+00	0.00E+00	2.98E-02	0.00E+00	0.00E+00	0.00E+00	1.97E-01
RPR_{M}	Renewable primary energy resources as material utilization	MJ	1.47E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRPR _E	Nonrenewable primary energy as energy carrier	MJ	1.53E+02	2.27E+00	1.85E+00	0.00E+00	9.36E-01	0.00E+00	1.57E+00
NRPR _M	Nonrenewable primary energy as material utilization	MJ	5.25E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
SM	Use of secondary material	kg	0.00E+00						
RSF	Use of renewable secondary fuels	MJ	0.00E+00						
NRSF	Use of nonrenewable secondary fuels	MJ	0.00E+00						
RE	Energy recovered from disposed waste	MJ	0.00E+00						
FW	Use of net fresh water	m ³	6.74E-03	0.00E+00	2.22E-04	0.00E+00	0.00E+00	0.00E+00	4.45E-04

RUBEROID[®] & Tri-Ply[®] APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane APP-Modified Bitumen Roofing

According to ISO 14025, ISO 14044, and ISO 21930:2017

Results below contain the output flows and wastes throughout the life cycle of the product.

Output Flows	and Waste Categories								
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
HWD	Hazardous waste disposed	kg	2.15E-03	0.00E+00	2.72E-10	0.00E+00	0.00E+00	0.00E+00	3.91E-10
NHWD	Non-hazardous waste disposed	kg	2.29E-01	0.00E+00	1.65E-01	0.00E+00	0.00E+00	0.00E+00	4.24E+00
HLRW	High-level radioactive waste	kg	0.00E+00						
ILLRW	Intermediate- and low-level radioactive waste	kg	8.11E-04	0.00E+00	6.14E-06	0.00E+00	0.00E+00	0.00E+00	1.67E-05
CRU	Components for re-use	kg	0.00E+00						
MR	Materials for recycling	kg	1.16E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MER	Materials for energy recovery	kg	0.00E+00						
EE	Recovered energy exported from system	MJ	0.00E+00						

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain direct greenhouse gas emissions and removals throughout the life cycle of the product.

Carbon Emis	sions and Removals								
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
BCRP	Biogenic Carbon Removal from Product	kg CO ₂	0.00E+00						
BCEP	Biogenic Carbon Emissions from Product	kg CO ₂	0.00E+00						
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	1.63E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.00E+00	0.00E+00	1.63E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg CO_2	0.00E+00						
CCE	Calcination Carbon Emissions	kg CO ₂	0.00E+00						
CCR	Carbonation Carbon Removal	kg CO ₂	0.00E+00						
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO ₂	0.00E+00						

 $\textbf{RUBEROID}^{\otimes} \And \textbf{Tri-Ply}^{\otimes} \textbf{ APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane}$

APP-Modified Bitumen Roofing

LCA Interpretation

The production life cycle stage (A1-A3) dominates the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with natural gas use in the manufacturing of the product. The asphalt coating raw material is a petroleum derivative, which creates upstream carbon emissions. Overall, the production of the product is significantly more energy intensive than any other stage. The end-of-life disposal stage (C4) has significant impact in global warming potential, acidification, and eutrophication due to the 100% landfill assumption. Also, third party verified ISO 14040/44 secondary LCI data sets contribute more than 67% of total impact to the impact categories shown above.

 $\text{RUBEROID}^{\circledast}$ & Tri-Ply $^{\circledast}$ APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane

APP-Modified Bitumen Roofing

LCA Results RUBEROID[®] EnergyCap[™] Torch Plus Granule FR

Notes on LCA Results:

*LCIA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks. *These six impact categories (those presented in the TRACI 2.1 Impact Assessment table below) are globally deemed mature enough to be included in Type III environmental declarations. Other categories are being developed and defined and LCA should continue making advances in their development, however the EPD users shall not use additional measures for comparative purposes.

Results shown below were calculated using TRACI 2.1 Methodology.

TRACI 2.1 Im	RACI 2.1 Impact Assessment											
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4			
GWP	Global warming potential	kg CO ₂ -Eq.	3.94E+00	1.76E-01	2.17E-01	0.00E+00	7.27E-02	0.00E+00	1.59E+00			
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	7.41E-11	6.67E-12	8.21E-16	0.00E+00	2.75E-12	0.00E+00	5.02E-15			
AP	Acidification potential for air emissions	kg SO ₂ -Eq.	1.99E-02	1.06E-03	2.76E-04	0.00E+00	4.37E-04	0.00E+00	9.73E-03			
EP	Eutrophication potential	kg N-Eq.	7.91E-04	5.86E-05	6.16E-05	0.00E+00	2.42E-05	0.00E+00	3.24E-03			
SP	Smog formation potential	kg O ₃ -Eq.	1.62E-01	2.91E-02	3.39E-03	0.00E+00	1.20E-02	0.00E+00	2.71E-02			
FFD	Fossil Fuel Depletion	MJ-surplus	1.91E+01	3.12E-01	2.61E-01	0.00E+00	1.29E-01	0.00E+00	2.04E-01			

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results shown below were calculated using CML 2001 - April 2013 Methodology.

CML 4.1 Im	pact Assessment								
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
GWP	Global warming potential	kg CO ₂ -Eq.	3.89E+00	1.77E-01	2.38E-01	0.00E+00	7.29E-02	0.00E+00	2.23E+00
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	7.51E-11	6.65E-12	4.85E-14	0.00E+00	2.75E-12	0.00E+00	2.97E-13
AP	Acidification potential for air emissions	kg SO ₂ -Eq.	2.12E-02	8.69E-04	1.80E-04	0.00E+00	3.59E-04	0.00E+00	4.27E-03
EP	Eutrophication potential	kg(PO ₄) ³ -Eq.	1.77E-03	1.55E-04	9.62E-05	0.00E+00	6.39E-05	0.00E+00	5.04E-03
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg ethane-Eq.	2.36E-03	1.02E-04	3.14E-05	0.00E+00	4.19E-05	0.00E+00	1.16E-03
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	4.08E-06	7.32E-11	2.29E-08	0.00E+00	3.02E-11	0.00E+00	3.37E-08
ADPF	Abiotic depletion potential for fossil resources	MJ	1.64E+02	2.25E+00	1.83E+00	0.00E+00	9.27E-01	0.00E+00	1.52E+00

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain the resource use throughout the life cycle of the product.

Resource Us	e								
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
RPR _E	Renewable primary energy as energy carrier	MJ	3.13E+00	0.00E+00	2.98E-02	0.00E+00	0.00E+00	0.00E+00	1.97E-01
RPR_{M}	Renewable primary energy resources as material utilization	MJ	0.00E+00						
NRPR _E	Nonrenewable primary energy as energy carrier	MJ	1.67E+02	2.27E+00	1.85E+00	0.00E+00	9.36E-01	0.00E+00	1.57E+00
$NRPR_{M}$	Nonrenewable primary energy as material utilization	MJ	0.00E+00						
SM	Use of secondary material	kg	0.00E+00						
RSF	Use of renewable secondary fuels	MJ	0.00E+00						
NRSF	Use of nonrenewable secondary fuels	MJ	0.00E+00						
RE	Energy recovered from disposed waste	MJ	0.00E+00						
FW	Use of net fresh water	m ³	7.92E-03	0.00E+00	2.22E-04	0.00E+00	0.00E+00	0.00E+00	4.45E-04

RUBEROID[®] & Tri-Ply[®] APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane APP-Modified Bitumen Roofing

According to ISO 14025, ISO 14044, and ISO 21930:2017

Results below contain the output flows and wastes throughout the life cycle of the product.

Output Flows	and Waste Categories								
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
HWD	Hazardous waste disposed	kg	2.15E-03	0.00E+00	2.72E-10	0.00E+00	0.00E+00	0.00E+00	3.91E-10
NHWD	Non-hazardous waste disposed	kg	2.32E-01	0.00E+00	1.65E-01	0.00E+00	0.00E+00	0.00E+00	4.24E+00
HLRW	High-level radioactive waste	kg	0.00E+00						
ILLRW	Intermediate- and low-level radioactive waste	kg	8.82E-04	0.00E+00	6.14E-06	0.00E+00	0.00E+00	0.00E+00	1.67E-05
CRU	Components for re-use	kg	0.00E+00						
MR	Materials for recycling	kg	0.00E+00						
MER	Materials for energy recovery	kg	0.00E+00						
EE	Recovered energy exported from system	MJ	0.00E+00						

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain direct greenhouse gas emissions and removals throughout the life cycle of the product.

Carbon Emis	sions and Removals								
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
BCRP	Biogenic Carbon Removal from Product	kg CO ₂	0.00E+00						
BCEP	Biogenic Carbon Emissions from Product	kg CO ₂	0.00E+00						
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	1.63E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.00E+00	0.00E+00	1.63E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg $\rm CO_2$	0.00E+00						
CCE	Calcination Carbon Emissions	kg CO ₂	0.00E+00						
CCR	Carbonation Carbon Removal	kg CO ₂	0.00E+00						
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO ₂	0.00E+00						

 $\textbf{RUBEROID}^{\otimes} \And \textbf{Tri-Ply}^{\otimes} \textbf{ APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane}$

APP-Modified Bitumen Roofing

LCA Interpretation

The production life cycle stage (A1-A3) dominates the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with natural gas use in the manufacturing of the product. The asphalt coating raw material is a petroleum derivative, which creates upstream carbon emissions. Overall, the production of the product is significantly more energy intensive than any other stage. The end-of-life disposal stage (C4) has significant impact in global warming potential, acidification, and eutrophication due to the 100% landfill assumption. Also, third party verified ISO 14040/44 secondary LCI data sets contribute more than 67% of total impact to the impact categories shown above.

 $\textbf{RUBEROID}^{\circledast} \And \textbf{Tri-Ply}^{\circledast} \textbf{APP} (\textbf{Atactic Polypropylene}) - \textbf{Modified Bitumen Roofing Membrane}$

APP-Modified Bitumen Roofing

LCA Results RUBEROID[®] Torch Plus Granule FR

Notes on LCA Results:

*LCIA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks. *These six impact categories (those presented in the TRACI 2.1 Impact Assessment table below) are globally deemed mature enough to be included in Type III environmental declarations. Other categories are being developed and defined and LCA should continue making advances in their development, however the EPD users shall not use additional measures for comparative purposes.

According to

ISO 14025, ISO 14044,

and ISO 21930:2017

CΛ

Results shown below were calculated using TRACI 2.1 Methodology.

TRACI 2.1 Im	pact Assessment								
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
GWP	Global warming potential	kg CO ₂ -Eq.	6.47E+00	3.31E-01	4.25E-01	0.00E+00	1.36E-01	0.00E+00	2.98E+00
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	1.16E-10	1.25E-11	1.61E-15	0.00E+00	5.15E-12	0.00E+00	9.41E-15
AP	Acidification potential for air emissions	kg SO ₂ -Eq.	3.41E-02	1.98E-03	5.41E-04	0.00E+00	8.17E-04	0.00E+00	1.82E-02
EP	Eutrophication potential	kg N-Eq.	1.55E-03	1.10E-04	1.21E-04	0.00E+00	4.53E-05	0.00E+00	6.06E-03
SP	Smog formation potential	kg O₃-Eq.	3.17E-01	5.47E-02	6.64E-03	0.00E+00	2.25E-02	0.00E+00	5.08E-02
FFD	Fossil Fuel Depletion	MJ-surplus	2.91E+01	5.84E-01	5.12E-01	0.00E+00	2.41E-01	0.00E+00	3.82E-01

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results shown below were calculated using CML 2001 - April 2013 Methodology.

CML 4.1 Im	pact Assessment								
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
GWP	Global warming potential	kg CO ₂ -Eq.	6.31E+00	3.31E-01	4.66E-01	0.00E+00	1.36E-01	0.00E+00	4.17E+00
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	1.37E-10	1.25E-11	9.51E-14	0.00E+00	5.13E-12	0.00E+00	5.57E-13
AP	Acidification potential for air emissions	kg SO ₂ -Eq.	3.57E-02	1.63E-03	3.53E-04	0.00E+00	6.72E-04	0.00E+00	8.00E-03
EP	Eutrophication potential	kg(PO ₄) ³ -Eq.	3.24E-03	2.90E-04	1.89E-04	0.00E+00	1.20E-04	0.00E+00	9.43E-03
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg ethane-Eq.	3.79E-03	1.91E-04	6.15E-05	0.00E+00	7.84E-05	0.00E+00	2.18E-03
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	5.76E-06	1.37E-10	4.49E-08	0.00E+00	5.66E-11	0.00E+00	6.31E-08
ADPF	Abiotic depletion potential for fossil resources	MJ	2.51E+02	4.21E+00	3.59E+00	0.00E+00	1.74E+00	0.00E+00	2.86E+00

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain the resource use throughout the life cycle of the product.

Resource Us	e								
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
RPRE	Renewable primary energy as energy carrier	MJ	1.71E+01	0.00E+00	5.84E-02	0.00E+00	0.00E+00	0.00E+00	3.68E-01
RPR _M	Renewable primary energy resources as material utilization	MJ	0.00E+00						
NRPR _E	Nonrenewable primary energy as energy carrier	MJ	2.65E+02	4.25E+00	3.63E+00	0.00E+00	1.75E+00	0.00E+00	2.94E+00
NRPR _M	Nonrenewable primary energy as material utilization	MJ	0.00E+00						
SM	Use of secondary material	kg	0.00E+00						
RSF	Use of renewable secondary fuels	MJ	0.00E+00						
NRSF	Use of nonrenewable secondary fuels	MJ	0.00E+00						
RE	Energy recovered from disposed waste	MJ	0.00E+00						
FW	Use of net fresh water	m ³	2.20E-02	0.00E+00	4.35E-04	0.00E+00	0.00E+00	0.00E+00	8.33E-04

RUBEROID[®] & Tri-Ply[®] APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane APP-Modified Bitumen Roofing

According to ISO 14025, ISO 14044, and ISO 21930:2017

Results below contain the output flows and wastes throughout the life cycle of the product.

Output Flows	and Waste Categories								
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
HWD	Hazardous waste disposed	kg	3.94E-03	0.00E+00	5.33E-10	0.00E+00	0.00E+00	0.00E+00	7.31E-10
NHWD	Non-hazardous waste disposed	kg	4.35E-01	0.00E+00	3.23E-01	0.00E+00	0.00E+00	0.00E+00	7.94E+00
HLRW	High-level radioactive waste	kg	0.00E+00						
ILLRW	Intermediate- and low-level radioactive waste	kg	4.88E-03	0.00E+00	1.20E-05	0.00E+00	0.00E+00	0.00E+00	3.12E-05
CRU	Components for re-use	kg	0.00E+00						
MR	Materials for recycling	kg	0.00E+00						
MER	Materials for energy recovery	kg	0.00E+00						
EE	Recovered energy exported from system	MJ	0.00E+00						

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain direct greenhouse gas emissions and removals throughout the life cycle of the product.

Carbon Emis	rbon Emissions and Removals										
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4		
BCRP	Biogenic Carbon Removal from Product	kg CO ₂	0.00E+00								
BCEP	Biogenic Carbon Emissions from Product	$kg CO_2$	0.00E+00								
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	1.63E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.00E+00	0.00E+00	1.63E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg CO $_2$	0.00E+00								
CCE	Calcination Carbon Emissions	kg CO ₂	0.00E+00								
CCR	Carbonation Carbon Removal	kg CO ₂	0.00E+00								
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO_2	0.00E+00								

 $\textbf{RUBEROID}^{\otimes} \And \textbf{Tri-Ply}^{\otimes} \textbf{ APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane}$

APP-Modified Bitumen Roofing

LCA Interpretation

The production life cycle stage (A1-A3) dominates the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with natural gas use in the manufacturing of the product. The asphalt coating raw material is a petroleum derivative, which creates upstream carbon emissions. Overall, the production of the product is significantly more energy intensive than any other stage. The end-of-life disposal stage (C4) has significant impact in global warming potential, acidification, and eutrophication due to the 100% landfill assumption. Also, third party verified ISO 14040/44 secondary LCI data sets contribute more than 67% of total impact to the impact categories shown above.

RUBEROID[®] & Tri-Ply[®] APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane

APP-Modified Bitumen Roofing

LCA Results RUBEROID[®] Torch Granule

Notes on LCA Results:

*LCIA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks. *These six impact categories (those presented in the TRACI 2.1 Impact Assessment table below) are globally deemed mature enough to be included in Type III environmental declarations. Other categories are being developed and defined and LCA should continue making advances in their development, however the EPD users shall not use additional measures for comparative purposes.

According to

ISO 14025, ISO 14044,

and ISO 21930:2017

CΛ

Results shown below were calculated using TRACI 2.1 Methodology.

TRACI 2.1 Imp	ACI 2.1 Impact Assessment											
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4			
GWP	Global warming potential	kg CO ₂ -Eq.	3.30E+00	1.69E-01	2.17E-01	0.00E+00	6.94E-02	0.00E+00	1.52E+00			
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	5.92E-11	6.38E-12	8.21E-16	0.00E+00	2.63E-12	0.00E+00	4.80E-15			
AP	Acidification potential for air emissions	kg SO ₂ -Eq.	1.74E-02	1.01E-03	2.76E-04	0.00E+00	4.17E-04	0.00E+00	9.29E-03			
EP	Eutrophication potential	kg N-Eq.	7.89E-04	5.62E-05	6.16E-05	0.00E+00	2.31E-05	0.00E+00	3.09E-03			
SP	Smog formation potential	kg O ₃ -Eq.	1.62E-01	2.79E-02	3.39E-03	0.00E+00	1.15E-02	0.00E+00	2.59E-02			
FFD	Fossil Fuel Depletion	MJ-surplus	1.49E+01	2.98E-01	2.61E-01	0.00E+00	1.23E-01	0.00E+00	1.95E-01			

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results shown below were calculated using CML 2001 - April 2013 Methodology.

CML 4.1 Im	pact Assessment								
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
GWP	Global warming potential	kg CO ₂ -Eq.	3.22E+00	1.69E-01	2.38E-01	0.00E+00	6.96E-02	0.00E+00	2.13E+00
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	6.98E-11	6.37E-12	4.85E-14	0.00E+00	2.62E-12	0.00E+00	2.84E-13
AP	Acidification potential for air emissions	kg SO ₂ -Eq.	1.82E-02	8.33E-04	1.80E-04	0.00E+00	3.43E-04	0.00E+00	4.08E-03
EP	Eutrophication potential	kg(PO ₄) ³ -Eq.	1.66E-03	1.48E-04	9.62E-05	0.00E+00	6.10E-05	0.00E+00	4.81E-03
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg ethane-Eq.	1.93E-03	9.73E-05	3.14E-05	0.00E+00	4.00E-05	0.00E+00	1.11E-03
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	2.94E-06	7.01E-11	2.29E-08	0.00E+00	2.89E-11	0.00E+00	3.22E-08
ADPF	Abiotic depletion potential for fossil resources	MJ	1.28E+02	2.15E+00	1.83E+00	0.00E+00	8.86E-01	0.00E+00	1.46E+00

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain the resource use throughout the life cycle of the product.

Resource Us	e								
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
RPR _E	Renewable primary energy as energy carrier	MJ	8.74E+00	0.00E+00	2.98E-02	0.00E+00	0.00E+00	0.00E+00	1.88E-01
RPR _M	Renewable primary energy resources as material utilization	MJ	0.00E+00						
NRPR _E	Nonrenewable primary energy as energy carrier	MJ	1.35E+02	2.17E+00	1.85E+00	0.00E+00	8.94E-01	0.00E+00	1.50E+00
NRPR _M	Nonrenewable primary energy as material utilization	MJ	0.00E+00						
SM	Use of secondary material	kg	0.00E+00						
RSF	Use of renewable secondary fuels	MJ	0.00E+00						
NRSF	Use of nonrenewable secondary fuels	MJ	0.00E+00						
RE	Energy recovered from disposed waste	MJ	0.00E+00						
FW	Use of net fresh water	m ³	1.13E-02	0.00E+00	2.22E-04	0.00E+00	0.00E+00	0.00E+00	4.25E-04

RUBEROID[®] & Tri-Ply[®] APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane APP-Modified Bitumen Roofing

According to ISO 14025, ISO 14044, and ISO 21930:2017

Results below contain the output flows and wastes throughout the life cycle of the product.

Output Flows	and Waste Categories								
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
HWD	Hazardous waste disposed	kg	2.01E-03	0.00E+00	2.72E-10	0.00E+00	0.00E+00	0.00E+00	3.73E-10
NHWD	Non-hazardous waste disposed	kg	2.22E-01	0.00E+00	1.65E-01	0.00E+00	0.00E+00	0.00E+00	4.05E+00
HLRW	High-level radioactive waste	kg	0.00E+00						
ILLRW	Intermediate- and low-level radioactive waste	kg	2.49E-03	0.00E+00	6.14E-06	0.00E+00	0.00E+00	0.00E+00	1.59E-05
CRU	Components for re-use	kg	0.00E+00						
MR	Materials for recycling	kg	0.00E+00						
MER	Materials for energy recovery	kg	0.00E+00						
EE	Recovered energy exported from system	MJ	0.00E+00						

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain direct greenhouse gas emissions and removals throughout the life cycle of the product.

Carbon Emissions and Removals									
Parameter Parameter		Unit	A1-A3	A4	A5	C1	C2	C3	C4
BCRP	BCRP Biogenic Carbon Removal from Product		0.00E+00						
BCEP Biogenic Carbon Emissions from Product		$kg CO_2$	0.00E+00						
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	1.63E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.00E+00	0.00E+00	1.63E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg CO $_2$	0.00E+00						
CCE	Calcination Carbon Emissions	kg CO ₂	0.00E+00						
CCR	CCR Carbonation Carbon Removal		0.00E+00						
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO_2	0.00E+00						

 $\textbf{RUBEROID}^{\otimes} \And \textbf{Tri-Ply}^{\otimes} \textbf{ APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane}$

APP-Modified Bitumen Roofing

LCA Interpretation

The production life cycle stage (A1-A3) dominates the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with natural gas use in the manufacturing of the product. The asphalt coating raw material is a petroleum derivative, which creates upstream carbon emissions. Overall, the production of the product is significantly more energy intensive than any other stage. The end-of-life disposal stage (C4) has significant impact in global warming potential, acidification, and eutrophication due to the 100% landfill assumption. Also, third party verified ISO 14040/44 secondary LCI data sets contribute more than 67% of total impact to the impact categories shown above.

RUBEROID® & Tri-Ply® APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane

APP-Modified Bitumen Roofing

LCA Results Tri-Ply[®] APP Granule

Notes on LCA Results:

*LCIA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks. *These six impact categories (those presented in the TRACI 2.1 Impact Assessment table below) are globally deemed mature enough to be included in Type III environmental declarations. Other categories are being developed and defined and LCA should continue making advances in their development, however the EPD users shall not use additional measures for comparative purposes.

According to ISO 14025, ISO 14044,

and ISO 21930:2017

e7^

Results shown below were calculated using TRACI 2.1 Methodology.

TRACI 2.1 Impact Assessment									
Parameter Parameter		Unit	A1-A3	A4	A5	C1	C2	C3	C4
GWP	Global warming potential	kg CO ₂ -Eq.	3.30E+00	1.69E-01	2.17E-01	0.00E+00	6.94E-02	0.00E+00	1.52E+00
ODP Depletion potential of the stratospheric ozone layer		kg CFC-11 Eq.	5.92E-11	6.38E-12	8.21E-16	0.00E+00	2.63E-12	0.00E+00	4.80E-15
AP	Acidification potential for air emissions	kg SO ₂ -Eq.	1.74E-02	1.01E-03	2.76E-04	0.00E+00	4.17E-04	0.00E+00	9.29E-03
EP	Eutrophication potential	kg N-Eq.	7.89E-04	5.62E-05	6.16E-05	0.00E+00	2.31E-05	0.00E+00	3.09E-03
SP	Smog formation potential	kg O ₃ -Eq.	1.62E-01	2.79E-02	3.39E-03	0.00E+00	1.15E-02	0.00E+00	2.59E-02
FFD	Fossil Fuel Depletion	MJ-surplus	1.49E+01	2.98E-01	2.61E-01	0.00E+00	1.23E-01	0.00E+00	1.95E-01

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results shown below were calculated using CML 2001 - April 2013 Methodology.

CML 4.1 Impact Assessment									
Parameter	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
GWP	Global warming potential	kg CO ₂ -Eq.	3.22E+00	1.69E-01	2.38E-01	0.00E+00	6.96E-02	0.00E+00	2.13E+00
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	6.98E-11	6.37E-12	4.85E-14	0.00E+00	2.62E-12	0.00E+00	2.84E-13
AP	Acidification potential for air emissions kg SO ₂ -Eq.		1.82E-02	8.33E-04	1.80E-04	0.00E+00	3.43E-04	0.00E+00	4.08E-03
EP	Eutrophication potential	kg(PO ₄) ³ -Eq.	1.66E-03	1.48E-04	9.62E-05	0.00E+00	6.10E-05	0.00E+00	4.81E-03
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg ethane-Eq.	1.93E-03	9.73E-05	3.14E-05	0.00E+00	4.00E-05	0.00E+00	1.11E-03
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	2.94E-06	7.01E-11	2.29E-08	0.00E+00	2.89E-11	0.00E+00	3.22E-08
ADPF Abiotic depletion potential for fossil resources		MJ	1.28E+02	2.15E+00	1.83E+00	0.00E+00	8.86E-01	0.00E+00	1.46E+00

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain the resource use throughout the life cycle of the product.

Resource Use									
Parameter Parameter		Unit	A1-A3	A4	A5	C1	C2	C3	C4
RPR _E Renewable primary energy as energy carrier		MJ	8.74E+00	0.00E+00	2.98E-02	0.00E+00	0.00E+00	0.00E+00	1.88E-01
RPR _M Renewable primary energy resources as material utilization		MJ	0.00E+00						
NRPR _E	Nonrenewable primary energy as energy carrier	MJ	1.35E+02	2.17E+00	1.85E+00	0.00E+00	8.94E-01	0.00E+00	1.50E+00
NRPR _M	Nonrenewable primary energy as material utilization	MJ	0.00E+00						
SM	Use of secondary material	kg	0.00E+00						
RSF	Use of renewable secondary fuels	MJ	0.00E+00						
NRSF Use of nonrenewable secondary fuels		MJ	0.00E+00						
RE	Energy recovered from disposed waste	MJ	0.00E+00						
FW	Use of net fresh water	m ³	1.13E-02	0.00E+00	2.22E-04	0.00E+00	0.00E+00	0.00E+00	4.25E-04

RUBEROID[®] & Tri-Ply[®] APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane APP-Modified Bitumen Roofing

According to ISO 14025, ISO 14044, and ISO 21930:2017

Results below contain the output flows and wastes throughout the life cycle of the product.

Output Flows and Waste Categories									
Parameter Parameter		Unit	A1-A3	A4	A5	C1	C2	C3	C4
HWD	Hazardous waste disposed	kg	2.01E-03	0.00E+00	2.72E-10	0.00E+00	0.00E+00	0.00E+00	3.73E-10
NHWD Non-hazardous waste disposed		kg	2.22E-01	0.00E+00	1.65E-01	0.00E+00	0.00E+00	0.00E+00	4.05E+00
HLRW High-level radioactive waste		kg	0.00E+00						
ILLRW	ILLRW Intermediate- and low-level radioactive waste		2.49E-03	0.00E+00	6.14E-06	0.00E+00	0.00E+00	0.00E+00	1.59E-05
CRU	CRU Components for re-use		0.00E+00						
MR Materials for recycling		kg	0.00E+00						
MER	Materials for energy recovery	kg	0.00E+00						
EE	Recovered energy exported from system	MJ	0.00E+00						

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain direct greenhouse gas emissions and removals throughout the life cycle of the product.

Carbon Emissions and Removals									
Parameter Parameter		Unit	A1-A3	A4	A5	C1	C2	C3	C4
BCRP	BCRP Biogenic Carbon Removal from Product		0.00E+00						
BCEP Biogenic Carbon Emissions from Product		$kg CO_2$	0.00E+00						
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	1.63E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.00E+00	0.00E+00	1.63E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg CO $_2$	0.00E+00						
CCE	Calcination Carbon Emissions	kg CO ₂	0.00E+00						
CCR	CCR Carbonation Carbon Removal		0.00E+00						
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO_2	0.00E+00						

 $\textbf{RUBEROID}^{\otimes} \And \textbf{Tri-Ply}^{\otimes} \textbf{ APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane}$

APP-Modified Bitumen Roofing

LCA Interpretation

The production life cycle stage (A1-A3) dominates the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with natural gas use in the manufacturing of the product. The asphalt coating raw material is a petroleum derivative, which creates upstream carbon emissions. Overall, the production of the product is significantly more energy intensive than any other stage. The end-of-life disposal stage (C4) has significant impact in global warming potential, acidification, and eutrophication due to the 100% landfill assumption. Also, third party verified ISO 14040/44 secondary LCI data sets contribute more than 67% of total impact to the impact categories shown above.

RUBEROID[®] & Tri-Ply[®] APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane

APP-Modified Bitumen Roofing

Additional Environmental Information

Environmental and Health During Manufacturing

During the manufacturing of all asphalt products, all legal regulations regarding emissions to air, wastewater discharge, solid waste disposal and noise emissions are followed. GAF manufacturing operations follow strict internal procedures to ensure safe and healthy working conditions for all employees and contractors working onsite.

Environmental and Health During Installation

There is no harmful emissive potential. No damage to health or impairment is expected under normal use corresponding to the intended use of the product. To insure safe and proper installation of GAF products please refer to the installation guide found on GAF product website https://www.gaf.com/.

Extraordinary Effects

Fire

Resistance by the roofing system to fire applied to the exterior roof surface is important. Typically, a UL Class A, B or C rating is required by building code. Occasionally, depending on the use of the building, special resistance to fire applied from within the building is required. This is normally expressed in the form of hourly ratings, and usually requires the use of a specialized roof assembly. Refer to current RUBEROID® and Tri-Ply® listings in the appropriate UL directory to verify roof assembly requirements for specific fire ratings. Refer to UL Product iQ for specific assemblies.

Water

Contain no substances that have any impact on water in case of flood.

Mechanical Destruction

No danger to the environment can be anticipated during mechanical destruction.

Delayed Emissions

Global warming potential is calculated using the TRACI 2.1 and CML 4.1 impact assessment methodologies. Delayed emissions are not considered.

Address

GAF 1 Campus Drive, Parsippany, NJ 07054

 $\text{RUBEROID}^{\circledast}$ & $\text{Tri-Ply}^{\circledast}$ APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane

APP-Modified Bitumen Roofing

References

-	General Program Instructions	UL Environment General Program Instructions February 2018, version 2.3.
-	PCR Part A	UL Environment: Product Category Rules for Building-Related Products and Services in North America, Part A: Life Cycle Assessment Calculation Rules and Report Requirements, v.3.2, December 2018.
-	PCR Part B	UL PCR for Asphalt Shingles, Built-up Asphalt Membrane Roofing and Modified Bituminous Membrane Roofing
-	LCA for Experts	thinkstep.one. LCA for Experts v. 10.6 (software).
-	ISO 14025	ISO 14025:2011-10, Environmental labels and declarations — Type III environmental declarations — Principles and procedures.
-	ISO 14040	ISO 14040:2009-11, Environmental management — Life cycle assessment — Principles and framework.
-	ISO 14044	ISO 14044:2006-10, Environmental management — Life cycle assessment — Requirements and guidelines.
-	ISO 14046	ISO 14046:2013 - Environmental management- Water footprint- Principles, requirements and guidelines
-	ISO 21930: 2017	ISO 21930:2017, Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products and services.
-	ISO 15392	ISO 15392:2008 - Sustainability in building construction- General principles
-	ISO 15686	ISO 15686-1:2011 - Buildings and constructed assets- Service life planning Part 1: General principles; ISO 15686-2:2008 - Part 2: Service life prediction procedures; ISO 15686-7:2008 - Part 7: Performance evaluation for feedback of service life data from practice; ISO 15686-8:2008 - Part 8: Reference service life and service life estimation
-	EN 15804	EN 15804:2012-04: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction product
-	NSF International	NSF Program Operator Rules, NSF International – National Center for Sustainability Standards, 2015
-	Characterization Method	IPPC. 2014. Climate Change 2013. The Physical Science Basis. Cambridge University Press. (http://www.ipcc.ch/report/ar5/wg1/).
-	Characterization Method	Hauschild M.Z., & Wenzel H. Environmental Assessment of Products. Springer, US, Vol. 2, 1998.
-	Characterization Method	Heijungs R., Guinée J.B., Huppes G., Lankreijer R.M., Udo de Haes H.A., Wegener Sleeswijk A. Environmental Life Cycle Assessment of Products: Guide and Backgrounds. CML. Leiden University, Leiden, 1992.
-	Characterization Method	Jenkin M.E., & Hayman G.D. Photochemical ozone creation potentials for oxygenated volatile organic compounds: sensitivity to variations in kinetic and mechanistic parameters. Atmospheric Environment. 1999, 33 (8) pp. 1275-1293.
-	Characterization Method	WMO. 1999. Scientific Assessment of Ozone Depletion: 1998, World Meteorological Organization Global Ozone Research and Monitoring Project - Report No. 44, WMO, Geneva.

RUBEROID[®] & Tri-Ply[®] APP (Atactic Polypropylene) - Modified Bitumen Roofing Membrane APP-Modified Bitumen Roofing

Contact Information

Study Commissioner

GAF Aly Perez Sustainability Manager 1 Campus Drive Parsippany, NJ 07054 alyson.perez@gaf.com

LCA Practitioner

Sustainable Solutions Corporation 155 Railroad Plaza, Suite 203 Royersford, PA 19468 USA (+1) 610 569-1047 info@sustainablesolutionscorporation.com www.sustainablesolutionscorporation.com